首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiopurine methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathiopurine. Several mutations in the TPMT gene have been identified which correlate with a low activity phenotype. The molecular basis for the genetic polymorphism of TPMT has been established for European Caucasians, African-Americans, Southwest Asians and Chinese, but it remains to be elucidated in Japanese populations. The frequency of the four allelic variants of the TPMT gene, TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G) were determined in Japanese samples (n=192) using polymerase chain reaction (PCR)-RFLP and allele-specific PCR-based assays. TPMT*3C was found in 0.8% of the samples (three heterozygotes). The TPMT*2, TPMT*3A and TPMT*3B alleles were not detected in any of the samples analyzed. This study provides the first analysis of TPMT mutant allele frequency in a sample of Japanese population and indicates that TPMT*3C is the most common allele in Japanese subjects.  相似文献   

2.
Acute lymphoblastic leukaemia (ALL) is the most common malignancy of childhood. Although current treatment results in long term survival in over 70% of cases there is evidence that as many as 50% could have been cured using a less complex regimen with a lower incidence of long term side effects. In previous studies it has been found that thiopurines given as part of continuing therapy are key agents in preventing relapse. However, optimal administration during continuing therapy is often not achieved. Variation in the level of thiopurine methyltransferase (TPMT) activity appears to be a major molecular determinant of the extent of thiopurine metabolism. TPMT activity shows a trimodal distribution pattern. A lack of activity is found in approximately one in 300 Caucasians; approximately 11% have intermediate activity and the remaining 89% high activity. Congenital loss of activity is associated with grossly elevated levels of active drug and profound myelosuppression on exposure to thiopurines. This loss of activity has been attributed to single nucleotide polymorphisms (SNPs) within the TPMT gene. The frequency of SNPs is related to ethnicity, with the most common in Caucasians being TPMT*3A which is characterized by a G to A transition at position 460 with a substitution of alanine for tyrosine at amino acid 154 (A154Y) and a transition of A to G at nucleotide 719 resulting in a change of tyrosine to cysteine at position 240 (Y240C). Polymorphisms have also been identified within the 5' flanking promoter region of the TPMT gene due to a variable number of tandem repeats (VNTR*3-*8). An overview of the polymorphisms identified to date, their implication on the metabolism of the thiopurine drugs and therapeutic importance will be discussed.  相似文献   

3.
Escherichia coli cells expressing the tpm gene encoding the bacterial thiopurine methyltransferase (bTPMT) are shown to methylate selenite and (methyl)selenocysteine into dimethylselenide (DMSe) and dimethyldiselenide (DMDSe). E. coli cells expressing tpm from a gene library cosmid clone (harboring a Pseudomonas syringae insert of about 20 kb) also methylated selenate into DMSe and DMDSe. bTPMT is the first methyltransferase shown to be involved in the methylation of these selenium derivatives.  相似文献   

4.
The pervasive influence of resident microorganisms on the phenotype of their hosts is exemplified by the intracellular bacterium Buchnera aphidicola, which provides its aphid partner with essential amino acids (EAAs). We investigated variation in the dietary requirement for EAAs among four pea aphid (Acyrthosiphon pisum) clones. Buchnera-derived nitrogen contributed to the synthesis of all EAAs for which aphid clones required a dietary supply, and to none of the EAAs for which all four clones had no dietary requirement, suggesting that low total dietary nitrogen may select for reduced synthesis of certain EAAs in some aphid clones. The sequenced Buchnera genomes showed that the EAA nutritional phenotype (i.e. the profile of dietary EAAs required by the aphid) cannot be attributed to sequence variation of Buchnera genes coding EAA biosynthetic enzymes. Metabolic modelling by flux balance analysis demonstrated that EAA output from Buchnera can be determined precisely by the flux of host metabolic precursors to Buchnera. Specifically, the four EAA nutritional phenotypes could be reproduced by metabolic models with unique profiles of host inputs, dominated by variation in supply of aspartate, homocysteine and glutamate. This suggests that the nutritional phenotype of the symbiosis is determined principally by host metabolism and transporter genes that regulate nutrient supply to Buchnera. Intraspecific variation in the nutritional phenotype of symbioses is expected to mediate partitioning of plant resources among aphid genotypes, potentially promoting the genetic subdivision of aphid populations. In this way, microbial symbioses may play an important role in the evolutionary diversification of phytophagous insects.  相似文献   

5.
Involvement of the bacterial thiopurine methyltransferase (bTPMT) in natural selenium methylation by freshwater was investigated. A freshwater environment that had no known selenium contamination but exhibited reproducible emission of dimethyl selenide (DMSe) or dimethyl diselenide (DMDSe) when it was supplemented with an organic form of selenium [(methyl)selenocysteine] or an inorganic form of selenium (sodium selenite) was used. The distribution of the bTPMT gene (tpm) in the microflora was studied. Freshwater bacteria growing on 10 micro M sodium selenite and 10 micro M sodium selenate were isolated, and 4.5 and 10% of the strains, respectively, were shown by colony blot hybridization to hybridize with a Pseudomonas syringae tpm DNA probe. Ribotyping showed that these strains are closely related. The complete rrs sequence of one of the strains, designated Hsa.28, was obtained and analyzed. Its closest phyletic neighbor was found to be the Pseudomonas anguilliseptica rrs sequence. The Hsa.28 strain grown with sodium selenite or (methyl)selenocysteine produced significant amounts of DMSe and DMDSe. The Hsa.28 tpm gene was isolated by genomic DNA library screening and sequencing. BLASTP comparisons of the deduced Hsa.28 bTPMT sequence with P. syringae, Pseudomonas aeruginosa, Vibrio cholerae, rat, and human thiopurine methyltransferase sequences revealed that the levels of similarity were 52 to 71%. PCR-generated Escherichia coli subclones containing the Hsa.28 tpm open reading frame were constructed. E. coli cells harboring the constructs and grown with sodium selenite or (methyl)selenocysteine produced significant levels of DMSe and DMDSe, confirming that the gene plays a role in selenium methylation. The effect of strain Hsa.28 population levels on freshwater DMSe and DMDSe emission was investigated. An increase in the size of the Hsa.28 population was found to enhance significantly the emission of methyl selenides by freshwater samples supplemented with sodium selenite or (methyl)selenocysteine. These data suggest that bTPMT can play a role in natural freshwater selenium methylation processes.  相似文献   

6.
The drug-metabolizing enzyme thiopurine S-methyltransferase (TPMT) catalyzes the S-methylation of thiopurines such as 6-mercaptopurine, 6-thioguanine, and azathiopurine, which are used as immunosuppressants and in the treatment of acute lymphoblastic leukemia and rheumatoid arthritis. TPMT enzymatic activity is a polymorphic trait, and poor metabolizers may develop life-threatening bone marrow failure. To avoid such adverse effects, the TPMT enzymatic activity in patients' red blood cells (RBCs) is routinely measured prior to thiopurine administration in a limited number of oncology clinics. In the present study, we took advantage of a highly sensitive and specific automated denaturing high-performance liquid chromatography (dHPLC) technique that not only detects known polymorphic alleles, but also identifies previously uncharacterized sequence variants. We developed a dHPLC-based protocol to analyze the entire coding region and validated the protocol to detect all 16 previously described variant alleles. We further analyzed the entire coding region of the TPMT gene in 288 control samples collected worldwide and identified two novel amino acid substitutions Arg163Cys (487C>T) and Arg226Gln (677G>A) within exons 7 and 10, respectively. The clinical application of this comprehensive screening system for examining the entire TPMT gene would help to identify patients at risk for bone marrow failure prior to 6-mercaptopurine therapy.  相似文献   

7.
Scheuermann TH  Keeler C  Hodsdon ME 《Biochemistry》2004,43(38):12198-12209
In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, commonly used for immune suppression and for the treatment of hematopoietic malignancies. Genetic polymorphisms in the TPMT protein sequence accelerate intracellular degradation of the enzyme through an ubiquitylation and proteasomal-dependent pathway. Research has led to the hypothesis that these polymorphisms destabilize the native structure of TPMT, resulting in the formation of misfolded or partially unfolded states, which are subsequently recognized for intracellular degradation. Addition of the cosubstrate, S-adenosylmethionine (SAM), prevents degradation of the TPMT polymorphs in experimental assays, presumably by stabilizing the native structure. Using a bacterial orthologue of TPMT from Pseudomonas syringae, we have used NMR spectroscopy to describe the consequences of binding sinefungin, a SAM analogue, on the structure and dynamics of the TPMT protein backbone. NMR chemical shift mapping experiments localize sinefungin to a highly conserved site in classical methyltransferases. Distal chemical shift changes involving the presumed active site cover imply indirect conformational changes induced by sinefungin, which may play a role in substrate recognition or the catalytic mechanism. Analysis of protein backbone dynamics based on NMR relaxation reveals a combination of complementary effects. Whereas the peripheral, inserted structural elements of the TPMT topology are conformationally stabilized by the presence of sinefungin, a consistent increase in backbone mobility is observed for the central, conserved structural elements. The potential implications for the structural and dynamic effects of binding sinefungin for the catalytic mechanism of the enzyme and the stabilization of the degradation-susceptible TPMT polymorphs are discussed.  相似文献   

8.
Thiopurine methyltransferase (TPMT) gene polymorphism regulates thiopurine therapeutic efficacy and toxicity. The aim of this study was to determine the influence of TPMT gene polymorphism in Egyptian children with acute lymphoblastic leukaemia (ALL). Sixty-four patients with ALL, T lineage (27%) and pre-B phenotype (73%), who were treated with BFM 90 or CCG 1991 standard risk protocol, and who also experienced myleosuppresion toxicity and required interruption and/or modification of thiopurine chemotherapy were recruited over a year period. Thirty-two patients were on maintenance and another 32 completed their chemotherapy. Seventy healthy age-matched and sex-matched children served as controls. They were subjected to clinical assessment, haematological panel investigations and TPMT gene polymorphism for G238C, G460A and A719G alleles assessment using PCR followed by RFLP analysis. Although none of the studied patients had the mutant TPMT variant alleles, myelosuppression toxicity in the form of different degree of neutropenia was detected in all patients. As a result of myelosuppression toxicity, most of the patients needed 6-MP dose modification either once (53.1%), twice (15.6%), or \(\ge \) thrice (25.1%) during their maintenance course and 96.9% of the patients required to stop 6-MP for less than a week (62.5%), up to 2 weeks (28.1%), or \(> 2\) weeks (6.3%). Patients also developed infection who mostly (71%) needed hospitalization. None of the studied G238C, G460A and A719G TPMT variant alleles were detected. Infections and febrile neutropenia were common causes of 6-PM dose modification and interruption.  相似文献   

9.
Changes in DNA bending and base flipping in a previously characterized specificity-enhanced M.EcoRI DNA adenine methyltransferase mutant suggest a close relationship between precatalytic conformational transitions and specificity (Allan, B. W., Garcia, R., Maegley, K., Mort, J., Wong, D., Lindstrom, W., Beechem, J. M., and Reich, N. O. (1999) J. Biol. Chem. 274, 19269-19275). The direct measurement of the kinetic rate constants for DNA bending, intercalation, and base flipping with cognate and noncognate substrates (GAATTT, GGATTC) of wild type M.EcoRI using fluorescence resonance energy transfer and 2-aminopurine fluorescence studies reveals that DNA bending precedes both intercalation and base flipping, and base flipping precedes intercalation. Destabilization of these intermediates provides a molecular basis for understanding how conformational transitions contribute to specificity. The 3500- and 23,000-fold decreases in sequence specificity for noncognate sites GAATTT and GGATTC are accounted for largely by an approximately 2500-fold increase in the reverse rate constants for intercalation and base flipping, respectively. Thus, a predominant contribution to specificity is a partitioning of enzyme intermediates away from the Michaelis complex prior to catalysis. Our results provide a basis for understanding enzyme specificity and, in particular, sequence-specific DNA modification. Because many DNA methyltransferases and DNA repair enzymes induce similar DNA distortions, these results are likely to be broadly relevant.  相似文献   

10.
11.
A metabolite of homocysteine (Hcy), the thioester Hcy thiolactone, damages proteins by modifying their lysine residues which may underlie Hcy-associated cardiovascular disease in humans. A protein component of high density lipoprotein, Hcy thiolactonase (HTase) hydrolyzes thiolactone to Hcy. Thiolactonase is a product of the polymorphic PON1 gene, also involved in detoxification of organophospates and implicated in cardiovascular disease. Polymorphism in PON1 affects the detoxifying activity of PON1 in a substrate-dependent manner. However, how PON1 polymorphism affects HTase activity is unknown. Here we report a strong association between the thiolactonase activity and PON1 genotype in human populations. High thiolactonase activity was associated with L55 and R192 alleles, more frequent in blacks than in whites. Low thiolactonase activity was associated with M55 and Q192 alleles, more frequent in whites than in blacks. High thiolactonase activity afforded better protection against protein homocysteinylation than low thiolactonase activity. These results suggest that variations in HTase may play a role in Hcy-associated cardiovascular disease.  相似文献   

12.
Alves S  Amorim A  Prata MJ 《Human genetics》2002,111(2):172-178
The promoter region of the human thiopurine methyltransferase (TPMT) gene contains a variable number of tandem repeats (VNTR) with three kind of motifs (A, B, and C) differing by the length of the unit core and nucleotide sequence. We have studied the structural variation within the VNTR alleles in two human populations and in samples from gorillas and chimpanzees. In humans, no intermingling of motifs was detected within the VNTR, and the sequences of the three core motifs remained remarkably unchanged, differences between alleles corresponding essentially to variations in the number of A and B repeats. The variation pattern in humans is consistent with an interpretation in which two contiguous genetic units (repeats A and B) behave evolutionarily according to the stepwise mutation model, as inferred from the population distribution profiles and from the molecular phylogenetic relationships among the VNTR alleles. However, the observation of a strong negative correlation between the numbers of A and B repeats also suggests that the regularity and/or independence of the mutational process has been disrupted to some extent by interactions between the A and B stretches. Selective pressure (the VNTR plays some role, although minor, in the TPMT function) or biased mutation are possible explanations. In gorillas and chimpanzees, several A-, B-, or C-like motifs were detected, but their arrangement within the VNTR alleles did not followed the regular pattern registered in humans and, particularly for the B-like motifs, a considerable sequence hypervariability was registered. Furthermore, the structural differences among non-human alleles were sufficiently numerous to render more plausible the assumption of the infinite allele model.  相似文献   

13.
Genetic determinants of cancer metastasis   总被引:9,自引:0,他引:9  
Metastasis can be viewed as an evolutionary process, culminating in the prevalence of rare tumour cells that overcame stringent physiological barriers as they separated from their original environment and developmental fate. This phenomenon brings into focus long-standing questions about the stage at which cancer cells acquire metastatic abilities, the relationship of metastatic cells to their tumour of origin, the basis for metastatic tissue tropism, the nature of metastasis predisposition factors and, importantly, the identity of genes that mediate these processes. With knowledge cemented in decades of research into tumour-initiating events, current experimental and conceptual models are beginning to address the genetic basis for cancer colonization of distant organs.  相似文献   

14.
Using data provided by the Collaborative Study on the Genetics of Alcoholism we studied the genetics of a quantitative trait: the maximum number of drinks consumed in a 24-hour period. A two-stage method was used. First, linkage analysis was performed, followed by association analysis in regions where linkage was detected. Additionally, the extent of linkage disequilibrium among single-nucleotide polymorphisms (SNP) associated with the phenotype was assessed. Linkage to chromosomes 2 and 7 was detected, and follow-up association analysis found multiple trait-associated SNPs in the chromosome 7 linkage region. Chromosome 4, which has been implicated in previous studies of the maximum drinks phenotype, did not pass our threshold for linkage evidence in stage 1, but secondary analyses of this chromosome indicated modest evidence for both linkage and association. The evidence suggests that chromosome 7 may harbor an additional locus influencing the maximum drinks consumption phenotype.  相似文献   

15.

BACKGROUND:

The impact of women''s menstrual cycle on her quality of life, health, work, and community is substantial. Menstrual disturbance is linked with general ill conditions such as migraine, asthma, and endocrinopathies. The clinical significance of medical interventions to prevent these conditions becomes clear if the role of genetic or environment is clarified.

AIMS:

To identify the genetic and environmental contribution on menstrual characteristics.

SETTING AND DESIGN:

This was a cross-sectional study in 2 Asian countries.

MATERIALS AND METHODS:

2 cohorts of monozygotic and dizygotic twins born between (1945-1988, n = 122) and (1951-1993, n = 71) were taken. A standard questionnaire was designed inclusive of socio- demographic characteristics of subjects as well as menstrual history (duration, interval, amount, irregularity). Subjects were interviewed by phone.

STATISTICAL ANALYSIS:

Quantitative variables were analyzed using Falconars’ formula as well as maximum likelihood analysis. Structural modeling was then applied to twin correlations to provide estimates of the relative genetic and/or environmental factors contribution in determining the measured trait.

RESULTS:

Menstrual characteristics were found to be under environmental influence where the best fitting model for menstrual interval and duration was common environment. CDF plotting confirmed the results for both variables. Proband-wise concordance analysis for amount of menstruation, amenorrhea, and irregular menstruation revealed no genetic influence. The best fitting model for menstrual irregularity was CE (C73%, E27%). The same model was defined for amenorrhea (C48%, E52%).

CONCLUSIONS:

Environmental factors are most likely responsible to determine the menstrual flow, its integrity, and regularity. These factors need to be studied further.  相似文献   

16.
17.
Skin reflectance measurements on a sample of 154 Black and 191 White same-sex twin pairs, attending Philadelphia area schools, are analyzed to determine the effects of genetic and environmental factors. The measurements obtained in July and August, on the forehead, inner upper arm, and flexor surface of the forearm with red, green, and blue filters, were reduced to one index which we call skin color. Analysis of this index using the path analysis of Rao et al. ('74) estimates the major variance components due to racial, residual genetic, and common environmental factors as 67%, 5%, and 22%, respectively.  相似文献   

18.
19.
The biochemical mechanism and developmental expression for the repair of alkylated DNA has been characterized from Drosophila. As in other organisms, the correction of O6-methylguanine in Drosophila was found to involve the transfer of a methyl group from DNA to a protein cysteine residue. Two methylated proteins with subunit molecular weights of 30 kDa and 19 kDa were identified following incubation with [3H]-methylated substrate DNA and denaturing polyacrylamide gel electrophoresis. Identical molecular weights were found for the unmethylated forms of protein through their reaction to an antibody prepared against the 19 kDa Escherichia coli methyltransferase. Both Drosophila proteins are serologically reactive in adult males and females and most of the other developmental stages tested, with embryos representing the possible exception. The Drosophila proteins do not appear to be induced by sublethal exposures to alkylating agent.  相似文献   

20.
In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, including 6-thioguanine, 6-mercaptopurine and azathioprine, commonly used for immune suppression and for the treatment of hematopoietic malignancies. S-Methylation by TPMT prevents the intracellular conversion of these drugs into active 6-thioguanine nucleotides (6-TGNs). Genetic polymorphisms in the TPMT protein sequence have been associated with decreased tissue enzymatic activities and an increased risk of life-threatening myelo-suppression from standard doses of 6-TP medications. Biochemical studies have demonstrated that TPMT deficiency is primarily associated with increased degradation of the polymorphic proteins through an ubiquitylation and proteasomal-dependent pathway. We have now determined the tertiary structure of the bacterial orthologue of TPMT from Pseudomonas syringae using NMR spectroscopy. Bacterial TPMT similarly catalyzes the S-adenosylmethionine (SAM)-dependent transmethylation of 6-TPs and shares 45% similarity (33% identity) with the human enzyme. Initial studies revealed an unstructured N terminus, which was removed for structural studies and subsequently determined to be required for enzymatic activity. Despite lacking sequence similarity to any protein of known three-dimensional structure, the tertiary structure of bacterial TPMT reveals a classical SAM-dependent methyltransferase topology, consisting of a seven-stranded beta-sheet flanked by alpha-helices on both sides. However, some deviations from the consensus topology, along with multiple insertions of structural elements, are evident. A review of the many experimentally determined tertiary structures of SAM-dependent methyltransferases demonstrates that such structural deviations from the consensus topology are common and often functionally important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号