首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the effect that a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002, has on cytosolic calcium concentrations ([Ca2+]i), bovine airway smooth muscle cells (BASMC) and cultured human bronchial smooth muscle cells (HBSMC) were loaded with fura 2-AM, imaged as single cells and [Ca2+]i measured ratiometrically. LY294002 (50 microM) increased [Ca2+]i by 294+/-76 nM (P<0.01, n=13) and 230+/-31 nM (P<0.001, n=10) in BASMC and HBSMC, respectively, and increases occurred in the absence of extracellular calcium. In contrast, after pre-treatment with thapsigargin, LY294002 no longer increased [Ca2+]i. This calcium mobilization by LY294002 was associated with a significant functional effect since LY294002 also inhibited calcium transients to carbachol (45+/-23 nM), caffeine (45+/-32 nM), and histamine (20+/-22 nM), with controls of 969+/-190, 946+/-156, and 490+/-28 nM, respectively. Wortmannin, a different PI3-kinase inhibitor, neither increased [Ca2+]i nor inhibited transients. Also, LY294002 increased [Ca2+]i in the presence of wortmannin, U-73122, and xestospongin C. We concluded that LY294002 increased [Ca2+]i, at least in part, by mobilizing intracellular calcium stores and inhibited calcium transients. The effects of LY294002 on [Ca2+]i were not dependent on wortmannin-sensitive PI3-kinases, phospholipase C, or inositol trisphosphate receptors (IP3R). For BASMC and HBSMC, LY294002 has effects on calcium regulation that could be important to recognize when studying PI3-kinases.  相似文献   

2.
The receptor mechanisms underlying vasopressin-induced human platelet activation were investigated with respect to stimulation of phosphoinositide metabolism and changes in the cytosolic free Ca2+ concentration ([Ca2+]i). Vasopressin stimulated phosphoinositide metabolism, as indicated by the early formation of [32P]phosphatidic acid ([32P]PtdA) and later accumulation of [32P]phosphatidylinositol ([32P]PtdIns). In addition, vasopressin elicited a transient depletion of [glycerol-3H]PtdIns and accumulation of [glycerol-3H]PtdA. The effects of vasopressin on phosphoinositide metabolism were concentration-dependent, with half maximal [32P]PtdA formation occurring at 30 +/- 15 nM-vasopressin. In the presence of 1 mM extracellular free Ca2+, vasopressin induced a rapid, concentration-dependent elevation of [Ca2+]i in quin2-loaded platelets: half-maximal stimulation was observed at 53 +/- 20 nM-vasopressin. The V1-receptor antagonist [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine,8-arginine]-vasopressin selectively inhibited vasopressin (100 nM)-induced [32P]PtdA formation [I50 (concn. giving 50% inhibition) = 5.7 +/- 2.4 nM] and elevation of [Ca2+]i (I50 = 3 +/- 1.5 nM). Prior exposure of platelets to vasopressin rendered them unresponsive, in terms of [32P]PtdA formation and elevation of [Ca2+]i, to a subsequent challenge with vasopressin, but responsive to a subsequent challenge with U44069, a thromboxane-A2 mimetic. These results indicate that vasopressin-induced human platelet activation is initiated by combination with specific V1 receptors on the platelet, and that the sequelae of receptor occupancy (stimulation of phosphoinositide metabolism and elevation of [Ca2+]i) are equally susceptible to inhibition by receptor antagonists and by receptor desensitization.  相似文献   

3.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

4.
The effects of erythropoietin (EPO) on cytosolic free calcium concentration ([Ca2+]i) in platelets of 20 essential hypertensive patients (HT) and of 25 normotensive subjects (NT) were investigated using the fura2 technique. In resting platelets [Ca2+]i were not significantly higher in HT compared to NT (74.3 +/- 7.8 nM vs 59.8 +/- 7.0 nM, mean +/- SEM). Addition of EPO significantly increased [Ca2+]i in HT compared to NT (13.8 +/- 5.3 nM vs 0.9 +/- 1.9 nM, p less than 0.01). EPO increased the amount of calcium in intracellular stores. This was confirmed independently using thrombin-induced changes of [Ca2+]i in a calcium-free medium and using chlorotetracycline as a marker of stored calcium. After preincubation with EPO thrombin-induced changes of [Ca2+]i were significantly lower in HT compared to NT (306.1 +/- 30.0 nM vs 407.7 +/- 35.7 nM, p less than 0.05). In a calcium-free medium after preincubation with EPO thrombin-induced changes of [Ca2+]i were significantly lower in HT compared to NT (54.7 +/- 11.8 nM vs 100.9 +/- 10.5 nM, p less than 0.05) indicating lower storage capacity in HT. It is concluded that elevated response to EPO may provide a powerful tool to evaluate diagnosis and underlying pathophysiological mechanisms in essential hypertension.  相似文献   

5.
By incubating platelets at low temperature (10 degrees C), the relationship between Ca2+ mobilization and formation of inositol 1,4,5-trisphosphate (IP3) in thrombin stimulated platelets could be precisely investigated. In the presence of 1 mM EGTA, time dependent changes in the intracellular free calcium concentration [( Ca2+]i) were closely related to those in IP3 formation. Time course of the influx of external Ca2+, estimated by delta [Ca2+]i obtained by subtracting [Ca2+]i in the presence of 1 mM EGTA from that in the presence of 1 mM CaCl2 was also very similar to that of IP3 formed. Furthermore, the increase in delta [Ca2+]i was extremely well correlated with the amount of IP3 formed (Y = 49X - 34, r = 0.99). Thus, these data indicate that IP3 might be involved not only in intracellular Ca2+ mobilization but in Ca2+ influx of human platelets stimulated by thrombin.  相似文献   

6.
Noncyclooxygenase metabolites of arachidonic acid may be potent modulators of the mitogenic response of renal mesangial cells to the mitogenic vasoactive peptide arginine vasopressin (AVP). Since Ca2+ is a critical second messenger in the response of mesangial cells to AVP, and Ca2+ has been implicated in the regulation of growth, we determined whether noncyclooxygenase metabolites altered the phospholipase C-Ca2+ signalling cascade which is activated by AVP. Pretreatment of mesangial cells for 10 min with lipoxygenase and cytochrome P450 monooxygenase inhibitors, nordihydroguaiaretic acid (NDGA, 10(-5) M) or SKF-525A (2.5 x 10(-5) M), but not the cyclooxygenase inhibitor indomethacin (2 x 10(-5) M), reduced the magnitude of the AVP (10(-8) and 10(-7) M)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) without affecting inositol trisphosphate production. With 10(-8) M AVP, [Ca2+]i increased to 250 +/- 47 nM in NDGA-treated cells versus 401 +/- 59 nM in control cells (p less than 0.01). [Ca2+]i, measured 2 min after exposure to AVP, was also lower with NDGA (152 +/- 21 nM) when compared with AVP alone (220 +/- 22 nM, p less than 0.01). 14,15-epoxyeicosatrienoic acid (EET) (10(-8) M), which had no effect on inositol trisphosphate production, completely reversed the NDGA-induced inhibition of the [Ca2+]i transient, whereas 5-hydroperoxyeicosatetraenoic acid (HPETE) (5 x 10(-7) M) did not. Pretreatment with higher concentrations of 14,15-EET (10(-7)-10(-6) M) markedly potentiated the AVP-induced increase in [Ca2+]i. NDGA-induced inhibition of the AVP-generated [Ca2+]i transient was also observed when cells were incubated in low Ca2+ media ([Ca2+] less than 5 x 10(-8) M), suggesting that NDGA pretreatment impaired intracellular release of Ca2+. Since NDGA had no direct effect on inositol 1,4,5-trisphosphate-induced Ca2+ release, we postulated that NDGA blocked production of a metabolite that releases Ca2+ from intracellular stores. 14,15-EET and 15-HPETE, but not 15-hydroxyeicosatetraenoic acid (each at 3 x 10(-7) M), raised [Ca2+]i when added directly to cells in low Ca2+ media. In permeabilized cells 14,15-EET and 15-HPETE (10(-7) M) potently released Ca2+ from intracellular stores. In summary, noncyclooxygenase metabolites of arachidonic acid, and in particular P450 metabolites, are potent endogenous amplifiers of the AVP-induced [Ca2+]i signal by mechanisms not directly involving phospholipase C activation. This effect is mediated, at least in part, by enhanced release of Ca2+ from intracellular storage sites by an inositol 1,4,5-trisphosphate-independent mechanism.  相似文献   

7.
The relationship between Ca2+ influx (delta [Ca2+]i) and the formation of inositol 1,4,5-trisphosphate (IP3) was investigated in human platelets stimulated by various agonists. Both delta [Ca2+]i and IP3 were increased in proportion to the amount of the agonists (thrombin, ADP, PAF, STA2), the receptors of which were demonstrated in platelets, and were correlated with each other. However, the ratio of delta [Ca2+]i to IP3 was significantly varied among agonists. Furthermore, in thrombin stimulated platelets, IP3 was small at low temperature (20 degrees C) compared with that at high temperature (37 degrees C) in spite of the similar delta [Ca2+]i. Thus, Ca2+ influx in human platelets seems to be regulated directly through the receptor operated mechanism and IP3 may not be involved in it.  相似文献   

8.
The effect of halothane on the regulation of blood platelet free cytosolic calcium was investigated in Quin-2-loaded cells from patients susceptible to Malignant Hyperthermia (MH) and healthy controls, respectively. The resting level of free cytosolic calcium was slightly, but statistically significantly, enhanced in platelets from patients (90 +/- 10 nM vs 110 +/- 35 nM). Halothane induced a dose-dependent, rapid Ca2+ release from intracellular stores both in normal and in MH derived cells, but the resulting increase in cytosolic calcium was significantly higher in the latter (2 mM halothane: [Ca2+]i = 117 +/- 12 nM vs 218 +/- 117 nM; 4 mM halothane: 225 +/- 35 nM vs. 417 +/- 201 nM). Whereas in platelets from healthy donors a complete reversibility of the halothane effect could be observed within 30-45 min, the cytosolic Ca2+ transients in platelets from patients were different from those in normals either in a higher initial peak or in a diminished decline velocity or in both. The basal Ca2+ permeability of the platelet plasma membrane was very low. Generally, halothane caused a dose-dependent increase in Ca2+ permeability. However, the influx of external calcium was significantly higher in platelets from patients than in controls (2 mM halothane: delta [Ca2+]i = 69 +/- 12 nM vs 135 +/- 63 nM; 4 mM halothane: 127 +/- 33 nM vs. 258 +/- 111 nM). Combining the results, the suggestion can be made that susceptibility to MH is characterized by a generalized membrane defect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Intracellular free calcium concentration ([Ca2+]i) was measured in fura-2-loaded single rat mesangial cells by dual wavelength spectrofluorometry. Stimulation with arginine vasopressin (AVP) caused an initial sharp rise of [Ca2+]i followed by repetitive spikes. The frequency of the oscillations was dependent on the concentration of AVP. At 0.1, 1.0, 10.0, and 100.0 nM AVP, the frequencies of oscillations were 0.17 +/- 0.05 (n = 6), 0.32 +/- 0.05 (n = 6), 0.49 +/- 0.05 (n = 6), and 0.48 +/- 0.05 min-1 (n = 5), respectively. Reduction in extracellular [Ca2+] reduced the frequency of AVP-induced oscillations but did not abolish the oscillations. The frequency of calcium oscillations, upon stimulation with 1.0 nM AVP, was directly correlated with the basal [Ca2+]i prior to stimulation. Oscillation frequency increased with increasing temperature. An Arrhenius plot between 24 and 37 degrees C indicated a strong temperature dependency of the oscillations with a Q10 of 3.0. Protein kinase C stimulation by active phorbol esters inhibited AVP-induced calcium oscillations but not the initial [Ca2+] response to AVP. These observations are consistent with a model incorporating a feedback loop linking [Ca2+]i to the mechanism of [Ca2+]i increase. Ca(2+)-induced Ca2+ release may be involved, whereby inositol 1,4,5-trisphosphate (inositol 1,4,5-P3) formation releases Ca2+ from an inositol 1,4,5-P3-sensitive pool, with subsequent Ca2+ uptake and release from an inositol 1,4,5-P3-insensitive pool.  相似文献   

10.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels.  相似文献   

11.
Effects of angiotensin II and [Arg]vasopressin on cytosolic free Ca2+ concentration ([Ca2+]i) and phosphoinositide metabolism were studied in cultured aortic smooth muscle cells obtained from Wistar-Kyoto rats and their spontaneously hypertensive substrain. [Ca2+]i was measured using the fluorescent Ca2+ indicator quin2. No clear differences in basal [Ca2+]i were detected between cells derived from the two strains. High concentrations of angiotensin II (greater than or equal to 10 nM) and [Arg]vasopressin (greater than or equal to 100 nM) elicited large and rapid increases in [Ca2+]i, followed by a rapid return to control values. Low concentrations of these peptides (less than or equal to 1.0 nM) elicited small and slow increases in [Ca2+]i that persisted for minutes. These responses were blocked by specific antagonists for each of these peptides. Only high concentrations of angiotensin II caused [Ca2+]i increases in "Ca2+-free" medium, which suggested that high concentrations of angiotensin II could release Ca2+ from intracellular pools. A high concentration of angiotensin II and [Arg]vasopressin elicited progressive accumulations of inositol phosphates. Only high concentrations of angiotensin II caused inositol phosphate accumulation in Ca2+-free medium. Maximal accumulation of inositol phosphate elicited by angiotensin II and [Arg]vasopressin was found to be additive. A desensitization to the effects of both peptides on Ca2+ mobilization occurred despite the continued accumulation of inositol phosphates. These observations indicated that angiotensin II and [Arg]vasopressin interacted with independent receptors, both of which are linked to phosphoinositide breakdown and Ca2+ mobilization.  相似文献   

12.
Mononuclear phagocytes infected with Leishmania have been shown to have defective responses to extracellular stimuli. To investigate the potential relationship of these findings to alterations in calcium-dependent signaling pathways, the regulation of [Ca2+]i concentrations was examined in human peripheral blood monocytes infected with amastigotes of Leishmania donovani. Measurements of [Ca2+]i in fura-2-loaded monocytes were made at the single cell level by microfluorimetry. In normal monocytes, resting [Ca2+]i was 56 +/- 2 nM (mean +/- SEM). In contrast, in monocytes infected with Leishmania there was an approximately twofold increase in basal [Ca2+]i (122 +/- 5 nM, p less than 0.01 vs control). Treatment of cells with pertussis toxin before infection did not abrogate infection-induced increases in basal [Ca2+]i, suggesting that this effect was not mediated via the activation of a G protein coupled to phospholipase C. However, elevated resting [Ca2+]i did correlate with increased rates of 45Ca2+ uptake by infected monocytes. As expected, in response to treatment with 10(-7) M FMLP, control monocytes showed rapid net increases in [Ca2+]i of 303 +/- 19 nM. In contrast, net transients of [Ca2+]i in infected monocytes in response to FMLP were attenuated to only 137 +/- 9 nM (p less than 0.01 vs control). This result was not related to excess buffering of [Ca2+]i in infected cells as both control and infected monocytes showed equivalent transients of [Ca2+]i in response to the calcium ionophore A23187. Rather, inhibition of agonist-induced calcium release in infected cells appeared related to defective generation of second messenger because compared to control cells labeled with myo-[2-3H]inositol, little accumulation of inositol 1,4,5-trisphosphate was detected in infected monocytes. Attenuation of inositol phosphate accumulation and calcium release in response to chemotactic peptide correlated with decreased FMLP-induced superoxide and hydrogen peroxide production by infected monocytes. These results provide direct evidence for defective regulation of [Ca2+]i and calcium-dependent signaling in Leishmania-infected monocytes and provide a basis for understanding abnormalities in activation-related responses that involve signaling through Ca(2+)-regulated pathways.  相似文献   

13.
We have investigated the effects of endothelin on phosphoinositide metabolism and Ca2+ mobilization in cultured A10 cells. Endothelin stimulated a significant increase in inositol phosphate formation in a time- and dose-dependent manner. IP3 was significantly elevated by 30 sec and reached a 2.0-fold above control at 1 min. The EC50 for endothelin was 0.5 nM. The initiation of inositol phosphate formation was independent of extracellular Ca2+, and the Ca2+ ionophore, A23187, did not stimulate IP3 formation. However, the sustained elevation of inositol phosphates was partially inhibited by incubating cells in buffer lacking Ca2+ or in buffer containing nicardipine. Endothelin mobilized both intracellular and extracellular Ca2+ reaching a peak intracellular concentration of 350 +/- 11 nM by 1 min when cells were bathed with Ca2+-complete buffer. Intracellular Ca2+ remained 2-fold above baseline for at least 15 min. In contrast, when cells were exposed to endothelin in Ca2+-free buffer, the peak value of [Ca2+]i was 195 +/- 20 nM and returned to baseline by 2 min. Nicardipine completely blocked the influx of extracellular Ca2+ but did not interfere with the mobilization of intracellular stores. We conclude that endothelin produces a rapid and sustained elevation in inositol phosphate formation. The rapid production of IP3 is consistent with the time course for mobilization of intracellular Ca2+. Elevated cytosolic Ca2+ levels are maintained by the influx of extracellular Ca2+ through a nicardipine-sensitive Ca2+ channel and are involved in the sustained formation of inositol phosphates. These data provide an explanation for the sustained, nicardipine-inhibitable contraction of coronary artery strips induced by endothelin.  相似文献   

14.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

15.
Platelet free calcium concentrations ([Ca2+]i) were measured with Fura-2 to elucidate the intracellular calcium kinetics in patients with renal disease. There were no significant differences of the resting [Ca2+]i among the control subjects (C) (n = 12), patients with chronic glomerulonephritis (CGN) (n = 8), and patients with chronic renal failure (CRF) (n = 12). In all groups, platelets [Ca2+]i were significantly increased by agonists (thrombin, adenosine diphosphate) compared with their respective basal level. Thrombin-induced [Ca2+]i rise was significantly higher in CRF (840 +/- 265 nM) than in C (600 +/- 163) and CGN (562 +/- 137). Also adenosine diphosphate elicited similar responses. In the presence of calcium chelator in the incubation buffer, the elevation of [Ca2+]i after thrombin stimulation was statistically higher in CRF (469 +/- 85 nM) than in C (275 +/- 60) and CGN (301 +/- 41). These findings suggest that platelets of CRF were capable of increasing [Ca2+]i in response to agonists, through further mobilization of calcium from the intracellular pool rather than the elevation of transmembrane calcium influx.  相似文献   

16.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

17.
Effects of Ca2+ ions on the mobilization of Ca2+ from intracellular stores of intact and permeabilized (15 microM digitonin) Ehrlich ascites tumour cells (EATC) have been compared. For permeabilized cells, the dependences of the initial rate and amplitude of Ca2+ mobilization evoked by the addition of 100 nM inositol 1,4,5-trisphosphate (IP3) on preexisting [Ca2+] were bell-shaped within a [Ca2+] range 10(-7)-10(-6) M with the maxima at [Ca2+] = 166 nM. In intact cells, different concentrations of free cytosolic Ca2+ ([Ca2+]i) were produced using low (up to 0.005%) concentrations of digitonin which selectively increased the permeability of the plasma membrane. Stimulation of cells by exogenous ATP at [Ca2+]i = 10(-8)-10(-6) M resulted in Ca2+ mobilization the rate and amplitude of which were maximal at 102-115 nM Ca2+. The experimental Ca2+ dependences were fit by a model which includes channel opening upon Ca2+ binding and transition to the inactive states upon Ca2+ binding to the closed and open channel forms. Three inactivation types (including two particular cases) demonstrate a slight priority of inhibitory binding of Ca2+ only to the open channel, but predict markedly different parameter values. We conclude that an increase in [Ca2+] can stimulate IP3-induced mobilization, but in intact EATC, deviations of [Ca2+]i from the resting level (about 100 nM) attenuate responses to the agonist stimulation.  相似文献   

18.
Our digital imaging microscope equipped with a microspectrofluorometer revealed in single resting human platelets the existence of continuous Ca2+ gradient increasing towards the plasma membrane (frequency; 100%) and discontinuous ones (Ca2+ plateaus) in the endoplasmic regions (frequency: 70%). An average cytoplasmic free Ca2+ concentration ([ Ca2+]i) in a whole cytoplasm was 72 +/- 7 nM, ranging from 30 nM in the lowest to 150 nM in the highest region just beneath the plasma membrane. When stimulated with thrombin, [Ca2+]i uniformly increased to the average [Ca2+]i of 300 nM and these gradients disappeared. This [Ca2+]i transient was followed by the sustained increase in [Ca2+]i in both single cells and cell suspension.  相似文献   

19.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

20.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号