首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sullivan PF  Welker JM 《Oecologia》2005,142(4):616-626
We examined the effects of passive open-top warming chambers on Eriophorum vaginatum production near Toolik Lake, Alaska, USA. During the 2002 growing season, chamber warming was consistent with the magnitude and seasonality observed in recent decades throughout northwestern North America. Leaf-growth rates were higher in late May and early June; maximum growth rates in each leaf cohort occurred earlier and peak biomass was observed 20 days earlier within the chambers. Consequently, plants within the chambers maintained more live leaf biomass during the period of highest photosynthetically active radiation. Annual leaf production within the chambers (21±2 mg tiller) was not significantly different than under ambient conditions (17±2 mg tiller) (P=0.2256) despite higher early-season growth rates. Root growth began earlier; growth rates were higher in late May and early June, and maximum growth rates occurred earlier within the chambers. Therefore, plants within the chambers maintained greater root biomass during what earlier studies have identified as a period of relatively high nutrient availability. Annual root production within the chambers (191±42 g m–2) was not significantly different than under ambient conditions (119±48 g m–2) (P=0.1979), although there was a trend toward higher production within the chambers. The tendency toward higher root production within the chambers is consistent with previous laboratory experiments and with the predictions of biomass allocation theory.  相似文献   

2.
Summary Experiments, performed withPinus pinaster cloned shoots submitted to an auxin treatment (NAA 10–6 M, 18 days), demonstrated that rooting abilityin vitro persists over 5 successive induction cycles (through out a 9-month period). Rooting ability needs a permanent synthesis of auxin synergists which activate the metabolism of cell dedifferentiation and root primordium initiation. Agar culture permitted intense meristem initiation, but prevented active root elongation. In the presence of a mycorrhizal fungus,Pisolithus tinctorius orHebeloma cylindrosporum, roots resumed growth and short lateral root formation was stimulated. These two phenomena induced by fungal association improve the quality of the root systems required to facilitate successful transplantation from test-tubes to field conditions.  相似文献   

3.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

4.
Bacteria isolated on nutrient agar and King's medium B from sunflower leaves, crown and roots inhibited in vitro growth of the leaf spot and wilt pathogens Alternaria helianthi, and Sclerotium rolfsii, respectively, and also the root rot pathogensRhizoctonia solani and Macrophomina phaseolina. Antagonistic bacteria from leaves were mainly actinomycetes and pigmented Gram-positive bacteria, while those from roots and crowns were identified asPseudomonas fluorescens-putida, P. maltophilia, P. cepacia, Flavobacterium odoratum andBacillus sp. In soil bioassays, when used as seed inoculum in the presence ofS. rolfsii, P. cepacia strain N24 increased significantly the percentage of seedling emergence. Bacterial strains which exhibited broad spectrum in vitro antagonistic activity were tested for colonisation of sunflower roots, when used as a seed inoculum. Good colonisers (104 to 106 bacteria/g root) were consistent in their ability to reduce disease and fungal wilt. A seedling having a primary root length < 5 cm with fewer lateral roots, necrosed cotyledons or crown and a wilted shoot indicated its diseased status. On an average, only 30% of seedlings were diseased when treated with the antagonistic strains, in the presence of the pathogen, while 60% of the seedlings were diseased in the presence of the pathogen alone. In microplots treated with strain N24, only 1 to 3% of the seedlings were wilted, while 14% of the seedlings were wilted in the presence of the pathogen alone. The results obtained show that bacterial antagonists of sclerotial fungi can be used as seed inocula to improve plant growth through disease suppression  相似文献   

5.
该研究以侧柏一年生硬枝插穗为实验材料,利用连续组织切片技术观察插穗不定根发生发育过程中的组织结构变化,分析插穗外部形态变化、不定根原基起源和不定根的形成过程,探讨侧柏插穗不定根发生模式和不定根的组织学起源。结果显示:侧柏扦插后可由愈伤组织、皮部诱导产生不定根,出现皮部生根、愈伤组织生根、愈伤组织兼具皮部生根3种类型;侧柏插穗中存在少量潜伏根原基,但插穗生根类型以诱导生根为主;不定根原基诱导产生于愈伤组织、木质部、形成层及次生韧皮部等部位。研究认为侧柏扦插生根属于多位点发生模式,不定根原基的组织学起源是愈伤组织、髓射线、射线原始细胞、尚未分化成熟的木质部细胞,通过人工诱导同时激活这些不定根起源位点能够显著提高生根率和生根质量。  相似文献   

6.
The in vitro cultures of the PR 204/84 peach rootstock (Prunus persica×P. amygdalus) produced the higher rooting percentage, mean root number, mean root length, fresh, and dry mass of roots when grown on media containing 88 mM sucrose or 88 mM glucose. Parafilm, rubber and aluminum foil as sealing materials were not significantly different in terms of rooting percentage, fresh, and dry mass of roots after 24 d in culture. The use of cotton as sealing material induced lower root number per shoot, length of roots, fresh, and dry mass of roots than the rest treatments.  相似文献   

7.
Experiments on plants are often carried out in growth chambers or greenhouses which necessitate the use of an artificial rooting environment, though this is seldom characterized in detail. Measurements were made to compare the rooting environment in large boxes (0.25 m3) with that in small pots (0.19, 0.55 and 1.90 dm3) in naturally lit chambers. Diurnal temperature fluctuations of 14.6, 11.6 and 7.7°C occurred in the post compared with only 1.9°C in the boxes. Soil drying to a matric potential of-50 kPa was approximately 25 times faster in the pots. The mean heights of 2 year old Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings grown throughout their second growing season in the three sizes of pots were 38, 62 and 92% of the mean height of those grown in the boxes. Soil solution nutrient concentrations in the boxes were considerably increased by soil drying, an aspect which seems to have received little attention in experiments involving artificially imposed drought. An alternative system of constraining the roots of individual plants within nylon fabric bags, embedded in larger volumes of soil, to facilitate harvesting of complete root systems is described. The importance of the rooting environment in determining the outcome of physiological experiments is also briefly discussed.  相似文献   

8.
Douglas fir seedlings grown under aseptic conditions in a peat-vermiculite substrate were inoculated with four pairs of ectomycorrhizal fungi to assess the relative inoculum dosages needed to establish two mycorrhizal fungi simultaneously in the same root system. The dual fungal combinations tested were: Pisolithus arhizus + Rhizopogon subareolatus, P. arhizus + R. roseolus, Laccaria bicolor + P. arhizus and L. bicolor + R. subareolatus. A total of 12 ml of inocula per plant was applied at the rates: 0+12, 3+9, 6+6, 9+3, 12+0, and 0+0 (v+v) for each combination. After 3 months growth, the number of mycorrhizas and uninfected short roots as well as the total plant biomass produced were recorded. Inoculations were successful with the fungal combinations P. arhizus + R. subareolatus and L. bicolor + P. arhizus. Plants developed P. arhizus and R. subareolatus mycorrhizas only at the rate 9Pa + 3Rs; at other rates tested, only monospecific mycorrhizas were formed. Plants developed L. bicolor and P. arhizus mycorrhizas at the three rates containing both fungi. L. bicolor behaved as an aggressive root colonizer and its level of root colonization remained constant at increasing rates of P. arhizus inoculum. L. bicolor displaced R. subareolatus at all inocula rates. P. arhizus displaced R. roseolus except at the rate 3Pa + 9Rr, with only a low number of mycorrhizas formed by either fungus. Total plant biomass was significantly increased by the presence of any fungal combination up to four times the values for uninoculated controls. P. arhizus and R. subareolatus were more effective in promoting plant growth and stimulating short root formation than either L. bicolor or R. roseolus.  相似文献   

9.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

10.
When high dosages of wild-type Rhizobium meliloti RCR2011 were inoculated at two different times, 24 h apart, onto either the primary roots of alfalfa (Medicago sativa L.) seedlings or onto lateral roots on opposite sides of a split-root system, the number of nodules generated by the second inoculum was much smaller than the number generated by the first inoculum. These results provide evidence that alfalfa has an active, systemic mechanism for feedback control of nodulation. Non-nodulating mutants and delayed, weakly nodulating mutants did not elicit a discernable suppression of nodulation by subsequently inoculated wild-type cells. An appreciable number of Rhizobium infections thus seem required to elicit the suppressive response. Mutants in nodulation regions IIb and IIa nodulated extensively in the initially susceptible region of the root, but nodule initiation by these mutants was 100–1000 times less efficient, respectively, than the parent. Nodules formed by these mutants emerged 1 d later than normal. The IIb mutants elicited a relatively strong suppression of nodulation in younger parts of the root, but region-IIa mutants elicited only a weak response. These results indicate that elicitation of the regulatory response need not be proportional to nodule formation and imply that genes in region IIa play an important role in elicitation. At high dosages, the region-II mutants induced the development of thick, short roots in a considerably higher percentage of plants than the wild-type bacteria. Nodules generated by wild-type isolates and region-II mutants did not emerge in strict acropetal sequence, probably because some infections developed more slowly than others. Prior exposure of the root to non-nodulating mutants resulted in nodulation by the parent in regions of the root otherwise too mature to be susceptible, indicating that exposure to these mutants may affect the sequence of root development.Abbreviations RT root tip - EH smallest emergent root hair - Tsr thick, short roots This is contribution No. 79-88 of the Ohio Agricultural Research and Development Center  相似文献   

11.
SeveralStreptomycesstrains are capable of suppressing potato scab caused byStreptomyces scabies.Although these strains have been successful in the biocontrol of potato scab in the field, little is known about how populations of pathogenicStreptomycesin the potato rhizosphere are influenced by inoculation of the suppressive strains. The effects of inoculum densities of pathogenic and suppressiveStreptomycesstrains on their respective populations on roots and in rhizosphere soil were examined during the growing season. The relationships between inoculum density or rhizosphere population densities and disease severity were also investigated. Populations of suppressiveStreptomycesstrain 93 increased significantly on roots with increasing inoculum dose. At its highest inoculum dose, the suppressive strain reached a population density greater than 106CFU/g root 14 weeks after planting. The ability of the suppressive strain to increase its populations with increasing inoculum density was hindered at high inoculum doses of the pathogen, suggesting that density-dependent competitive interactions may be occurring between the two antagonists. Strain 93 was most effective at preventing scab early in the growing season (8 weeks after planting), when tubers were most susceptible to the scab disease. Population densities of the suppressive strain in soil were more highly negatively correlated with scab severity than were populations on roots, suggesting that rhizosphere soil rather than potato roots may be the primary source of inoculum of the suppressive strain for tubers.  相似文献   

12.
Bacterial growth in the rhizosphere and resulting changes in plant growth parameters were studied in small aseptic seedlings of birch (Betula pendula and B. pubescens) and grasses (Poa pratensis and Festuca rubra). The seedlings were inoculated with three Frankia strains (Ai1a and Ag5b isolated from native Alnus root nodules and Ai17 from a root nodule induced by soil originating from a Betula pendula stand), and three associative N2-fixing bacteria (Enterobacter agglomerans, Klebsiella pneumoniae and Pseudomonas sp., isolated from grass roots). Microscopic observations showed that all the Frankia strains were able to colonize and grow on the root surface of the plants tested without addition of an exogenous carbon source. No net growth of the associative N2-fixers was observed in the rhizosphere, although inoculum viable counts were maintained over the experimental period. Changes in both the biomass and morphology of plant seedlings in response to bacterial inoculation were recorded, which were more dependent on the plant species than on the bacterial strain.  相似文献   

13.
Summary Spring flooding was investigated as a possible limiting factor in the development of nitrogenase activity, root growth, and shoot growth inMyrica gale. Dormant, one year oldMyrica gale plants were placed in a greenhouse in early April and given three treatments: control (not flooded), flooded-water (flooded with water to 2.5 cm above the soil level) and flooded-peat (flooded with water-saturated peat to 4.0 cm above the soil level). Nitrogenase activity was absent at budbreak but appeared concurrently with the differentiation of vesicles by theFrankia sp. endophyte. Flooding delayed the onset of nitrogenase activity, substantially reduced the specific nitrogenase activity of the nodules, and also severely limited the production of the new nodule biomass. Consequently by 67 days past budbreak nitrogenase activity was much greater in the control plants (5.55±0.42 mol C2H4/plant.h; ± SE; N=9) than in the flooded-water (1.18±0.29) and flooded-peat (0.15±0.05) plants. Production of new secondary roots was substantially reduced in the flooded plants but adventitious roots were rapidly produced along the flooded portion of the stem in the better aerated zone near the surface. New nodules formed on several adventitious roots by 67 days indicating that the plants are able to replace their largely nonfunctional deeply flooded nodules with new nodules in the aerobic zone. Initially shoot growth was unaffected by flooding but by 67 days the flooded plants had substantially less leaf biomass, lower leaf and stem nitrogen concentrations, and less total shoot nitrogen content than the control plants.  相似文献   

14.
Accumulation of reactive oxygen species in arbuscular mycorrhizal roots   总被引:1,自引:0,他引:1  
Fester T  Hause G 《Mycorrhiza》2005,15(5):373-379
We investigated the accumulation of reactive oxygen species (ROS) in arbuscular mycorrhizal (AM) roots from Medicago truncatula, Zea mays and Nicotiana tabacum using three independent staining techniques. Colonized root cortical cells and the symbiotic fungal partner were observed to be involved in the production of ROS. Extraradical hyphae and spores from Glomus intraradices accumulated small levels of ROS within their cell wall and produced ROS within the cytoplasm in response to stress. Within AM roots, we observed a certain correlation of arbuscular senescence and H2O2 accumulation after staining by diaminobenzidine (DAB) and a more general accumulation of ROS close to fungal structures when using dihydrorhodamine 123 (DHR 123) for staining. According to electron microscopical analysis of AM roots from Z. mays after staining by CeCl3, intracellular accumulation of H2O2 was observed in the plant cytoplasm close to intact and collapsing fungal structures, whereas intercellular H2O2 was located on the surface of fungal hyphae. These characteristics of ROS accumulation in AM roots suggest similarities to ROS accumulation during the senescence of legume root nodules.  相似文献   

15.
The distribution of nodules of soybean (Glycine max (L.) Merr.) cultivar Bragg and the supernodulating mutant derivative nts382 was examined on the primary root relative to the first emerging lateral root, and on laterals relative to the base of the roots of plants grown in sand-vermiculite. Mutant nts382 nodulates profusely even in the presence of nitrate and appears defective in a systemic autoregulatory response that regulates nodule number in soybean. Nodules were clustered on primary roots about the first 4 cm down from the first emerging lateral root in both genotypes. Nodulation profiles showed reduced nodulation in younger and older regions of the primary root. Similarly, nodules appeared clustered close to the base of the lateral roots. Decreasing inoculum dose shifted nodule emergence to younger regions of the primary root and to lateral roots emerging in younger portions of the primary root. Our results indicate that the supernodulating mutant is able to regulate nodule number in both primary and lateral roots in the particulate matrix.  相似文献   

16.
We have developed an efficient transformation system for Tylophora indica, an important medicinal plant in India, using Agrobacterium rhizogenes strains LBA9402 and A4 to infect excised leaf and stem explants and intact shoots at different sites. The induction of callus and transformed roots was dependent on the bacterial strain, explant type and inoculation site used. Transformed roots were induced only in explants infected with A. rhizogenes strain A4, while an optimal transformation frequency of up to 60% was obtained with intact shoots inoculated at the nodes. The presence of the left-hand transferred DNA (TL-DNA) in the genome of T. indica roots induced by A. rhizogenes was confirmed by PCR amplification of the rooting locus genes of A. rhizogenes. Root growth and the production of tylophorine, the major alkaloid of the plant, varied substantially among the nine root clones studied. Both parameters increased over time in liquid cultures, with maximum biomass and tylophorine accumulation occurring within 4–6 weeks of growth in fresh medium. Interestingly, in liquid culture, the culture medium also accumulated tylophorine up to concentrations of 9.78±0.21 mg l–1.  相似文献   

17.
An experiment was conducted to study sour orange (Citrus aurantium L.) seedling root density, distribution, and morphological development under NaCl and polyethylene glycol (PEG) stresses in relation to shoot growth and stomatal conductance. Plants were treated with 2 stress levels (– 0.12 and – 0.24 MPa) of NaCl and PEG 4000 for 7 months. Root observation chambers were used to monitor root growth and distribution under stressed and non-stressed conditions. Seedlings receiving NaCl or PEG treatments produced fewer roots and shallower root systems with 46 to 65% of the roots occurring in the top portion of the soil. Fibrous root weight per unit length was increased by 24 to 30% by PEG but was not significantly increased by NaCl.Root growth rate usually alternated with shoot growth in a 2-month cycle. This alternating pattern was not shifted by NaCl and PEG stresses. In all NaCl and PEG treatments, growth was depressed and stomatal conductance was reduced. Compared to controls, plants that received NaCl or PEG had smaller shoot and root dry weights, fewer leaves, shorter height, and fewer roots. Sodium chloride usually caused less damage than PEG to sour orange seedlings suggesting that NaCl and PEG acted through different mechanisms.Florida Agricultural Experiment Station Journal Series No. 9941.  相似文献   

18.
The complex interactions that occur in systems with more than one type of symbiosis were studied using one isolate of Bradyrhizobium sp. and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch inoculated on to the roots of Acacia holosericea A. Cunn. ex G. Don in vitro. After a single inoculation with Bradyrhizobium sp., bacteria typically entered the roots by forming infection threads in the root hair cells via the curling point of the root hair and/ or after intercellular penetration. Sheath formation and intercellular penetration were observed on Acacia roots after a single inoculation with Pisolithus tinctorius but no radial elongation of epidermal cells. Simultaneous inoculation with both microorganisms resulted in nodules and ectomycorrhiza on the root system, occasionally on the same lateral root. On lateral roots bearing nodules and ectomycorrhiza, the nodulation site was characterized by the presence of a nodule meristem and the absence of an infection thread; sheath formation and Hartig net development occurred regularly in the region of the roots adjacent to nodules. Prior inoculation with Bradyrhizobium sp. did not inhibit ectomycorrhizal colonization in root segments adjacent to nodules in which nodule meristems and infection threads were clearly present. Conversely, in ectomycorrhizae inoculated by bacteria, the nodule meristem and the infection thread were typically absent. These results show that simultaneous inoculation with both microorganisms inhibits infection thread development, thus conferring an advantage on fungal hyphae in the competition for infection sites. This suggests that fungal hyphae can modify directly and/or indirectly the recognition factors leading to nodule meristem initiation and infection thread development.  相似文献   

19.
Root colonization studies, employing immunofluorescence and using locally isolated strains, showed thatEnterbacter sp. QH7 andEnterobacter agglomerans AX12 attached more readily to the roots of most plants compared withAzospirillum brasilense JM82. Heat treatment of either root or inoculum significantly decreased the adsorption of bacteria to the root surface. Kallar grass and rice root exudates sustained the growth ofA. brasilense JM82,Enterobacter sp. QH7 andE. agglomerans AX12 in Hoagland and Fahraeus medium. All the strains colonized kallar grass and rice roots in an axenic culture system. However, in studies involving mixed cultures,A. brasilense JM82 was inhibited byEnterobacter sp. QH7 in kallar grass rhizosphere and the simultaneous presence ofEnterobacter sp. QH7 andE. agglomerans AX12 suppressed the growth ofA. brasilense JM82 in rice rhizosphere. The bacterial colonization pattern changed from dispersed to aggregated within 3 days of inoculation. The colonization sites corresponded mainly to the areas where root mucigel was present. The area around the point of emergence of lateral roots usually showed maximum colonization.  相似文献   

20.
Norway maple (Acer platanoidesis) is invasive in a natural stand in suburban Ithaca, NY. To determine the understory pattern and consequences of a Norway maple invasion, I compared density and species richness under Norway maples and sugar maples (Acer saccharum). Mean sapling density was significantly lower (P<0.0027) under Norway maples (3.64/100 m2±1.6 SE) than under sugar maples (19.4/100 m2±4.4 SE). Mean sapling species richness was significantly lower (P<0.0018) under Norway maples (0.7/32 m2±0.18 SE) than under sugar maples (2.6/32 m2±0.48 SE). Likewise, Norway maple regeneration is more frequent under sugar maples than sugar maple regeneration: 57% of sugar maple plots had Norway maple saplings while 0% of Norway maple plots had sugar maple saplings. Two significant plot effects were found for presence–absence: Norway maple saplings grow under Norway maples with a significantly lower frequency (P<0.03) than under sugar maples; sugar maple saplings grow under Norway maples with a significantly lower frequency (P<0.000) than under sugar maples. Across the site, Norway maple saplings were the most abundant (29 saplings for 480 m2). The success of Norway maple regeneration and the reductions in total stem density beneath Norway maples is most likely the result of its strong competitive abilities, notably its high shade tolerance and abundant seed crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号