首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
腾海艳 《菌物学报》2020,39(1):120-127
本文采用水提醇沉法从灵芝孢子粉中提取其粗多糖,经Sepharose CL-6B凝胶柱层析分离得两种主要成分LBPI和LBPII,经高效液相色谱鉴定,均为高均一性成分,分子量分别为9.17×10 4和1.86×10 4;经酸水解、乙酰化和气相色谱分析,确定LBPI的单糖组成为甘露糖、半乳糖和葡萄糖,LBPII的单糖组成为鼠李糖、甘露糖、半乳糖和葡萄糖;通过高碘酸氧化、甲基化和GC-MS进行结构分析,确定LBPI中葡萄糖残基连接方式为1→、1→4,6和1→3,6连接,半乳糖残基为1→6连接,甘露糖残基为1→3,6连接,LBPII中鼠李糖残基连接方式为1→连接,葡萄糖残基为1→、1→4、1→6、1→4,6和1→3,6连接,半乳糖残基为1→6连接,甘露糖残基为1→2,3,6连接。综上,两种多糖LBPI和LBPII均为多分支的中型杂多糖,但两者的单糖组成和连接方式存在差异,这两种多糖成分均为首次报道,可望为灵芝孢子粉的成分、活性研究和资源开发提供理论依据。  相似文献   

2.
对小刺猴头过滤掉发酵液的发酵菌丝体,水提和碱提后获得的均一组分多糖HMP-w1.1和HMP-a1.1进行结构性质的研究。结果表明:HMP-w1.1是分子量为36.3 kD的α型吡喃糖,单糖组成为甘露糖(Man),葡萄糖(Glc),半乳糖(Gal),岩藻糖(Fuc);HMP-a1.1是分子量为42.8 kD的β型吡喃糖,单糖组成为甘露糖(Man),半乳糖醛酸(GalUA),葡萄糖(Glc),半乳糖(Gal),岩藻糖(Fuc)。综合高碘酸氧化和Smith降解的试验结果,推断HMP-w1.1的糖苷键构型可能为1→、1→4、1→4,6、1→6、1→2、1→2,6;HMP-a1.1的糖苷键构型可能为1→6、1→2、1→2,6。  相似文献   

3.
根瘤菌TISTR 386胞外酸性多糖的结构研究   总被引:1,自引:0,他引:1  
根瘤菌TISTR 386胞外酸性多糖有二种九糖的重复单位构成。重复单位主要成份是D一葡萄糖,D一半乳糖和D一葡萄糖醛酸,它们的克分子比例分别是6:l:2和5:2:2。另外还含有一些丙酮酸和醋酸。甲基化分析表明,这个多糖由一个(1→3)键,一个(1→6)键,三个(1→4)键,一个(1→4,1→6)键连结的葡萄糖残基,一个(1→3)键连结的D-半乳糖残基,以及一个(1→3)键,一个(1→4)键连结的D-葡萄糖醛酸残基所组成。非还原末端糖残基是D葡萄糖或是带有丙酮酸的D一半乳糖,这也是二种九糖重复单位区别所在。  相似文献   

4.
为明确紫球藻多糖的化学结构,本文采用化学分析和光谱分析方法对紫球藻多糖的一级糖链结构进行了分析。GC分析表明该多糖由木糖、葡萄糖和半乳糖组成,为一种杂多糖,其摩尔比为:2.96∶1.25∶3.06;红外光谱分析结果显示紫球藻多糖为硫酸化多糖,糖苷键类型为β构型;化学分析结果推断紫球藻多糖糖链连接方式以1→3为主,存在少量1→2,1→4,1→6键型,且半乳糖在支链或主链末端有较大量的存在,木糖和葡萄糖在主链或靠近主链区域有特定分布;NMR分析显示紫球藻多糖的硫酸酯基连在C-6上,且多糖的糖苷键为β型;GC-MS联机分析进一步确定紫球藻多糖为一种主要含有1→3糖苷键,并含有1→4,1→6糖苷键的杂多糖。综合上述分析,推断出紫球藻多糖的糖链主链的重复单元结构。  相似文献   

5.
灵芝孢子粉水溶性多糖的分离、纯化及结构研究   总被引:3,自引:0,他引:3  
灵芝孢子粉的热水提取液经醇析,脱脂,去单寡糖后由SepharoseCL 6B柱层析纯化,所得多糖SGL Ⅱ2经高效液相方法鉴定纯度为单一级分,相对分子质量为5 .37×10 4。再经部分酸水解、高碘酸氧化、Smith降解、甲基化分析及IR、GC、GC MS和13 CNMR等方法确定其结构。结果表明多糖SGL Ⅱ 2由葡萄糖和半乳糖组成,为少分支结构,由1→3连接和1→6连接的葡萄糖构成主链,部分1→6连接葡萄糖在3位或4位有分支,侧链为1→4连接的半乳糖,分支末端残基为葡萄糖。  相似文献   

6.
松杉灵芝发酵菌丝体经热水提取,冻融分级及乙醇二次分级,分离纯化出GFb级份,电泳及凝胶柱层析示其为均一多糖,分子量为9.8万。小于子实体多糖相应级份。 GFb经红外光谱,气相色谱,气质联机,碳13核磁共振,高碘酸盐氧化,Smith降解,甲基化及部分酸水解分析,确定其基本结构中主链为1→6葡萄糖基和1→6半乳糖基构戍,二者之比为1∶1,分支点在0-3位上,分枝点率为50%,与子实体多糖GF_3相同,侧链由1→3葡萄糖基,1→4葡萄糖基,末端葡萄糖基及末端半乳糖基构成,分子中分枝率为55.6%,较子实体多糖GF_3分枝率略低,分枝链略短。  相似文献   

7.
从北京地区土样中分离到一株革兰氏阴性、无芽胞、稀周毛及运动的菌株S-1231。它能以糖类为底物产丁二酸型胞外多糖,不能利用淀粉和纤维素。该菌发酵葡萄糖产酸,生长12-24小时.细胞杆状O.7一O.8×1.3—1.5μm,圆端,单个或成对。在营养洋菜平板上菌落圆形、低凸、表面光滑、润泽、边缘整齐。该菌产生3-酮基乳糖,接种向日葵不致瘤,DNA中G十c含量62.8 -63.4免分子%。该菌氧化酶阳性,接触酶阳性,产生H2s,35℃生长,2%NaCl生长,及石蕊牛奶产碱,该菌定为放射形土壤杆菌生物变型Ⅰ。组分分析表明.该菌株产生的胞外多糖(简称Agran-s)由D-葡萄糖(69.1%),D-半乳糖(8.6%),丙酮酸(9.5%)和丁二酸(10.8%)组成。甲基化分析表明,多糖Agran-s含有下列主要结构单位(均为β-糖苷键):(1→3)一连接的D-葡萄糖(21 2%);(1→3)-连接的D-半乳糖(11.4%);(1-6)-连接的D葡萄糖(10.5%);(1→4)-连接的D-葡萄耱(30.4%)。(1→4,1→6)连接的D-葡萄糖(22.2%)和末端D-葡萄糖(4.3%)。  相似文献   

8.
研究了从中药丹皮(Moutan Cortex)中得到的酸性多糖PSM2b-A的化学结构.实验结果表明PSM2b-A由鼠李糖、阿拉伯糖、葡萄糖、半乳糖、甘露糖和少量蛋白质、糖醛酸组成.甲基化分析、部分酸水解、高碘酸氧化和smith降解等化学方法和IR,13C NMR试验进一步表明PSM2b-A为以(1→6)、(1→4)连接为主链的、带有少量分支的结构复杂的杂多糖,在分子间氢键的作用下能形成高级结构.该多糖化学结构为首次报道.  相似文献   

9.
柴雅红  章英才 《广西植物》2017,37(9):1187-1194
以宁夏4个不同地区(灵武、中宁、青铜峡、银川)成熟期的灵武长枣果实为研究对象,经水提醇沉法提取,采用DEAE-cellulose52和HW-55S分离纯化,并利用GC-MS法进行多糖的单糖组成分析。结果表明:多糖提取率最高的是灵武地区,达到1.795%;分离纯化后,4个地区的长枣多糖各得到1个中性(Ju-0)和3个酸性组分(Ju-1、Ju-2、Ju-3),其中Ju-2含量最高;GC-MS分析可知灵武长枣多糖含有阿拉伯糖、鼠李糖、核糖、岩藻糖、木糖、甘露糖、半乳糖、葡萄糖、葡萄糖醛酸、半乳糖醛酸10种单糖,不含果糖,以阿拉伯糖、核糖、半乳糖和2种糖醛酸为主,木糖含量最低。各地区多糖的单糖组成、含量各不相同,从各组分来看,四个地区多糖的Ju-0和Ju-1组分组成均以阿拉伯糖、核糖、半乳糖为主,四个地区多糖的组成差异主要在于Ju-2和Ju-3组分。从各地区单糖总量来看,灵武地区是阿拉伯糖含量最高,中宁、青铜峡、银川地区以葡萄糖醛酸含量为最高。  相似文献   

10.
 从人参叶中提取的水溶性多糖经分离纯化得杂多糖P_N。P_N的分子量约为190万,单糖组成为阿拉伯糖、鼠李糖、木糖、半乳糖醛酸、半乳糖、葡萄糖及少量未知糖,单糖的摩尔比依次为8.1:0.8:1.0:1.6:12.5:4.1(未知糖除外)。经超离心分析,琼脂糖4B柱分析,玻璃纤维纸电泳和醋酸薄膜电泳鉴定等证明P_N为均一组份。经果胶酶降解,部分酸水解,高碘酸盐氧化,Smith降解,甲基化及其产物气相色谱(GLC)、气相色谱-质谱联用(GLC-MS)等结构分析表明P_N为多分支结构,分子的主链主要是由β-(1→3)连接的半乳糖组成,并在4—0和6—0上带有分支,平均每三个半乳糖有二个分支。  相似文献   

11.
A novel neutral heteropolysaccharide (DDP-1-D) was purified from hot water extracts of dried stem of Dendrobium densiflorum by DEAE-52 and Sephacryl S-200 High-Resolution Chromatography. The heteropolysaccharide had an average molecular weight about 9440 Da. It was composed mainly of glucose and mannose in the ratio of 3.01:1. Structural features of DDP-1-D were elucidated by a combination of chemical and instrumental techniques, including FT-IR, GC-MS, periodate oxidation-Smith degradation, (1)H and (13)C NMR spectroscopies (including COSY, TOCSY, HSQC, and HMBC spectra). The results indicated that DDP-1-D is a mannoglucan and has a backbone consisting of (1→4)-linked α-D-Glcp, (1→6)-linked α-D-Glcp, (1→2)-linked α-D-Manp and (1→4)-linked β-Manp. This is the first study to provide clear evidence for the structure of the polysaccharide in D. densiflorum.  相似文献   

12.
利用水提醇沉提取东北红豆杉多糖TP,经超滤得到超滤外液TP-1和内液TP-2。TP-2进行部分酸水解和凝胶柱层析分离纯化,得到TP-2-1a。通过对理化性质、分子量、单糖组成和甲基化测定结果分析,确定其分子量分布在7.0 kDa左右,糖组成由Rha、Man、Gal、Glu、GalA和GlcA构成,摩尔比为:16.9∶1.0∶15.5∶1.3∶9.9∶2.5,中性糖以Gal的1→3、1→4连接为主,在1→3连接的O-6位上有分支;Rha以1→2连接为主,在O-4位上有分支;Man以1→4、1→6连接为主;Glu以1→3、1→4连接为主;非还原末端主要是Gal及少量的Man、Glu和Rha。酸性糖以1→4连接GalA为主,无分支。该多糖为首次从东北红豆杉中分离得到。  相似文献   

13.
Three polysaccharides, two heteroglycans (PL-1 and PL-4) and one glucan (PL-3), were solubilized from the fruit bodies of Ganoderma lucidum and isolated by anion-exchange and gel-filtration chromatography. Their structural features were elucidated by glycosyl residue and glycosyl linkage composition analyses, partial acid hydrolysis, acetolysis, periodate oxidation, 1D and 2D NMR spectroscopy, and ESI-MS experiments. The data obtained indicated that PL-1 had a backbone consisting of 1,4-linked alpha-D-glucopyranosyl residues and 1,6-linked beta-D-galactopyranosyl residues with branches at O-6 of glucose residues and O-2 of galactose residues, composed of terminal glucose, 1,6-linked glucosyl residues and terminal rhamnose. PL-3 was a highly branched glucan composed of 1,3-linked beta-D-glucopyranosyl residues substituted at O-6 with 1,6-linked glucosyl residues. PL-4 was comprised of 1,3-, 1,4-, 1,6-linked beta-D-glucopyranosyl residues and 1,6-linked beta-D-mannopyranosyl residues. These polysaccharides enhanced the proliferation of T- and B-lymphocytes in vitro to varying contents and PL-1 exhibited an immune-stimulating activity in mice.  相似文献   

14.
A heteroxylan was isolated from Eucalyptus globulus wood by extraction of peracetic acid delignified holocellulose with dimethyl sulfoxide. Besides (1-->4)-linked beta-D-xylopyranosyl units of the backbone and short side chains of terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl residues (MeGlcA) in a 1:10 molar ratio, this hemicellulose contained galactosyl and glucosyl units attached at O-2 of MeGlcA originating from rhamnoarabinogalactan and glucan backbones, respectively. About 30% of MeGlcA units were branched at O-2. The O-acetyl-(4-O-methylglucurono)xylan showed an acetylation degree of 0.61, as determined by 1H NMR spectroscopy, and a weight-average molecular weight (M(w)) of about 36 kDa (P=1.05) as revealed from size-exclusion chromatography (SEC) analysis. About half of the beta-D-xylopyranosyl units of the backbone were found as acetylated moieties at O-3 (34 mol%), O-2 (15 mol%) or O-2,3 (6 mol%). Practically, all beta-D-xylopyranosyl units linked at O-2 with MeGlcA residues were 3-O-acetylated (10 mol%).  相似文献   

15.
Caulobacters are adherent prosthecate bacteria that are members of bacterial biofouling communities in many environments. Investigation of the cell surface carbohydrates produced by two strains of the freshwater Caulobacter crescentus, CB2A and CB15A, revealed a hitherto undetected extracellular polysaccharide (EPS) or capsule. Isolation and characterization of the EPS fractions showed that each strain produced a unique neutral EPS which could not be readily removed from the cell surface by washing. Monosaccharide analysis showed that the main CB2A EPS contained D-glucose, D-gulose, and D-fucose in a ratio of 3:1:1, whereas the CB15A EPS fraction contained D-galactose, D-glucose, D-mannose, and D-fucose in approximately equal amounts. Methylation analysis of the main CB2A EPS showed the presence of terminal glucose and gulose groups, 3-linked fucosyl, and two 3,4-linked glucosyl units, thus confirming the pentasaccharide repeating unit indicated by 1H nuclear magnetic resonance analysis. Similar studies of the CB15A EPS revealed a tetrasaccharide repeating unit consisting of terminal galactose, 4-linked fucosyl, 3-linked glucosyl, and 3,4-linked mannosyl residues. EPS was not detectable by thin-section electron microscopy techniques, including some methods designed to preserve or enhance capsules, nor was the EPS readily detected on the cell surface by scanning electron microscopy when conventional fixation techniques were used; however, a structure consistent with EPS was revealed when samples were prepared by cryofixation and freeze-substitution methods.  相似文献   

16.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

17.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

18.
A new heteropolysaccharide, HEPF3, was isolated from the fruiting bodies of Hericium erinaceus. HEPF3 has a molecular weight of 1.9 x 10(4) Da and is composed of fucose and galactose in a ratio of 1:4.12. Compositional analysis, methylation analysis, together with 1H and 13C NMR spectroscopy established that HEPF3 consists of a branched pentasaccharide repeating unit with the following structure: [structure: see text]. HEPF3 also contains a minor proportion of 3-O-methylrhamnose that is thought to terminate the polymer main chain.  相似文献   

19.
Weissella confusa VTT E-90392 is an efficient producer of a dextran that is mainly composed of α-(1→6)-linked D-glucosyl units and very few α-(1→3) branch linkages. A mixture of the Chaetomium erraticum endodextranase and the Aspergillus niger α-glucosidase was used to hydrolyze W. confusa dextran to glucose and a set of enzyme-resistant isomaltooligosaccharides. Two of the oligosaccharides (tetra- and hexasaccharide) were isolated in pure form and their structures elucidated. The tetrasaccharide had a nonreducing end terminal α-(1→3)-linked glucosyl unit (α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glc), whereas the hexasaccharide had an α-(1→3)-linked isomaltosyl side group (α-D-Glcp-(1→6)[α-D-Glcp-(1→6)-α-D-Glcp-(1→3)]-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glc). A mixture of two isomeric oligosaccharides was also obtained in the pentasaccharide fraction, which were identified as (α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glc) and (α-D-Glcp-(1→6)[α-D-Glcp-(1→3)]-α-D-Glcp-(1→6)-α-D-Glcp-(1→6)-α-D-Glc). The structures of the oligosaccharides indicated that W. confusa dextran contains both terminal and elongated α-(1→3)-branches. This is the first report evidencing the presence of elongated branches in W. confusa dextran. The (1)H and (13)C NMR spectroscopic data on the enzyme-resistant isomaltooligosaccharides with α-(1→3)-linked glucosyl and isomaltosyl groups are published here for the first time.  相似文献   

20.
The carbohydrate composition of the surface receptor for macrophage migration inhibitory factor (MIF) on guinea pig macrophages has been studied by examining the interaction of MIF with different saccharides and by testing the ability of plant lectins with known saccharide binding affinities to bind to macrophages and block their response to MIF. Comparison of the effectiveness of a variety of natural and synthetic mono- and disaccharides in inhibiting MIF activity in lymphocyte supernatants revealed that inhibitory activity was confined to natural 5-methylpentose sugars (l-fucose > l-rhamnose = 6-deoxy-d-glucose) and synthetic saccharides containing α-fucosyl residues. Observations on the MIF inhibitory activity of synthetic fucosyl glycosides containing fucosyl residues of defined configuration at terminal and subterminal positions indicate that MIF interacts preferentially with terminal α-l-fucopyranosyl residues and does not recognize subterminal saccharides. Studies with disaccharides containing α-(1 → 2)-, α-(1 → 3), and α-(1 → 6)-linked l-fucosyl residues failed to reveal preferential interaction of MIF with any one linkage configuration. Incubation of macrophages before exposure to MIF with lectins that bind to terminal fucosyl residues (Lotus tetragonolobus and Ulex europaeusI, agglutinins) rendered them unresponsive to MIF but lectins which bind to nonterminal fucosyl residues and to other saccharides had no effect. The role of fucosyl residues in the binding of MIF by macrophages is discussed with reference to the possible composition of the MIF receptor and the role of fucose-containing glycolipids as receptors for this lymphokine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号