首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past few years, there has been remarkable progress in knowledge of the structures and organization of the protein complexes of photosynthetic membranes. However, static structures do not tell the whole story. Photosynthetic membranes, like other biological membranes, are dynamic systems. Recent technological advances are making it increasingly easy to probe the dynamics of photosynthetic membranes using fluorescence recovery after photobleaching. Here we explain the potential and the limitations of the technique.  相似文献   

2.
When co-translationally inserted into endoplasmic reticulum (ER) membranes, newly synthesized proteins encounter the lumenal environment of the ER, which contains chaperone proteins that facilitate the folding reactions necessary for protein oligomerization, maturation and export from the ER. Here we show, using a temperature-sensitive variant of vesicular stomatitis virus G protein tagged with green fluorescent protein (VSVG-GFP), and fluorescence recovery after photobleaching (FRAP), the dynamics of association of folded and misfolded VSVG complexes with ER chaperones. We also investigate the potential mechanisms underlying protein retention in the ER. Misfolded VSVG-GFP complexes at 40 degrees C are highly mobile in ER membranes and do not reside in post-ER compartments, indicating that they are not retained in the ER by immobilization or retrieval mechanisms. These complexes are immobilized in ATP-depleted or tunicamycin-treated cells, in which VSVG-chaperone interactions are no longer dynamic. These results provide insight into the mechanisms of protein retention in the ER and the dynamics of protein-folding complexes in native ER membranes.  相似文献   

3.
Motions of membrane-associated proteins within and between membranes are essential for many cellular functions. We describe the application of fluorescence recovery after photobleaching (FRAP) beam-size analysis to investigate the role of palmitoylation in the membrane targeting and membrane association dynamics of H-Ras. The method described distinguishes between FRAP by lateral diffusion and by cytoplasmic exchange, and enables to obtain an estimate of the membrane affinity in live cells. These studies show distinct roles for the two palmitoylation sites (Cys181 and Cys184) on H-Ras, with different effects on membrane affinity and microlocalization.  相似文献   

4.
Hincha DK 《FEBS letters》2008,582(25-26):3687-3692
Tocopherol (vitamin E) is widely recognized as a cellular antioxidant. It is essential for human and animal health, but only synthesized in photosynthetic organisms, where it is localized in chloroplast membranes. While many studies have investigated non-antioxidative effects of tocopherol on phospholipid membranes, nothing is known about its effects on membranes containing chloroplast glycolipids. Here, liposomes resembling plant chloroplast membranes were used to investigate the effects of alpha-tocopherol on vesicle stability during freezing and on lipid dynamics. alpha-Tocopherol had a pronounced influence on membrane dynamics and showed strong interactions in its effects on membrane stability during freezing with the cryoprotectant sucrose. alpha-Tocopherol showed maximal effects at low concentrations (around 2mol%), close to its contents in chloroplast membranes.  相似文献   

5.
Recent advances in our understanding of the intracellular trafficking, membrane microenvironment, and subcellular sites of signaling of Ras have been driven by observations of GFP-tagged Ras in living cells. Here, we describe methods to gain further insight into the regulation of these events through the use of quantitative fluorescence microscopy. We focus on three techniques, fluorescence recovery after photobleaching (FRAP), fluorescence loss in photobleaching (FLIP), and selective photobleaching. While all of these techniques exploit photobleaching as a tool to monitor protein dynamics, they each provide a unique subset of information. In particular, FRAP provides measurements of protein mobility via lateral diffusion by monitoring recovery of fluorescence into a region following a single photobleaching event. FLIP assesses the level of continuity and communication between subcellular compartments by repetitively photobleaching a region of interest and following concomitant loss of fluorescence from other areas in the cell. Selective photobleaching reveals kinetic information about active and passive transport of proteins into organelles such as the Golgi complex or between areas of protein enrichment such as caveolae. We describe how to implement these techniques using commercially available confocal microscopes and outline methods for data analysis. Finally, we discuss how these approaches are being used to provide new insights into the mechanisms of membrane microdomain localization, vesicular versus non-vesicular transport, and kinetics of exchange of Ras on and off of cell membranes.  相似文献   

6.
Cholesterol is an abundant lipid of mammalian membranes and plays a crucial role in membrane organization, dynamics, function and sorting. The role of cholesterol in membrane organization has been a subject of intense investigation that has largely been carried out in model membrane systems. An extension of these studies in natural membranes, more importantly in neuronal membranes, is important to establish a relationship between disease states and changes in membrane physical properties resulting from an alteration in lipid composition. We have monitored the lateral diffusion of lipid probes, DiIC(18)(3) and FAST DiI which are similar in their intrinsic fluorescence properties but differ in their structure, in native and cholesterol-depleted hippocampal membranes using the fluorescence recovery after photobleaching (FRAP) approach. Our results show that the mobility of these probes is in general higher in hippocampal membranes depleted of cholesterol. Interestingly, the increase in mobility of these probes does not linearly correlate with the extent of cholesterol depletion. These results assume significance in the light of recent reports on the requirement of cholesterol to support the function of the G-protein coupled serotonin(1A) receptor present endogenously in hippocampal membranes.  相似文献   

7.
8.
Carotenoids, apart of their antenna function in photosynthesis, play an important role in the mechanisms protecting the photosynthetic apparatus against various harmful environmental factors. They protect plants against overexcitation in strong light and dissipate the excess of absorbed energy, they scavenge reactive oxygen species formed during photooxidative stress and moderate the effect of extreme temperatures. One of the important factors involved in the protective action of carotenoids is their influence on the molecular dynamics of membranes. To obtain complex information about interactions between carotenoids and lipids in a membrane, different techniques were used. In this review, the data resulting from EPR–spin label spectrometry, 31P- and 13C-NMR, differential scanning calorimetry, and computer simulation of the membrane molecular dynamics are presented. The effects of selected, structurally different carotenoid species on various physical parameters of model and natural membranes are described and their relevance to protection against some environmental stresses are discussed.  相似文献   

9.
Fluorescence recovery after photobleaching (FRAP) is used to obtain quantitative information about molecular diffusion and binding kinetics at both cell and tissue levels of organization. FRAP models have been proposed to estimate the diffusion coefficients and binding kinetic parameters of species for a variety of biological systems and experimental settings. However, it is not clear what the connection among the diverse parameter estimates from different models of the same system is, whether the assumptions made in the model are appropriate, and what the qualities of the estimates are. Here we propose a new approach to investigate the discrepancies between parameters estimated from different models. We use a theoretical model to simulate the dynamics of a FRAP experiment and generate the data that are used in various recovery models to estimate the corresponding parameters. By postulating a recovery model identical to the theoretical model, we first establish that the appropriate choice of observation time can significantly improve the quality of estimates, especially when the diffusion and binding kinetics are not well balanced, in a sense made precise later. Secondly, we find that changing the balance between diffusion and binding kinetics by changing the size of the bleaching region, which gives rise to different FRAP curves, provides a priori knowledge of diffusion and binding kinetics, which is important for model formulation. We also show that the use of the spatial information in FRAP provides better parameter estimation. By varying the recovery model from a fixed theoretical model, we show that a simplified recovery model can adequately describe the FRAP process in some circumstances and establish the relationship between parameters in the theoretical model and those in the recovery model. We then analyze an example in which the data are generated with a model of intermediate complexity and the parameters are estimated using models of greater or less complexity, and show how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we show how sophisticated global sensitivity analysis can be used to detect over-fitting when using a model that is too complex.  相似文献   

10.
Unicellular cryptophyte algae employ antenna proteins with phycobilin chromophores in their photosynthetic machinery. The mechanism of light harvesting in these organisms is significantly different than the energy funneling processes in phycobilisomes utilized by cyanobacteria and red algae. One of the most striking features of cryptophytes is the location of the water-soluble phycobiliproteins, which are contained within the intrathylakoid spaces and are not on the stromal side of the lamellae as in the red algae and cyanobacteria. Studies of mobility of phycobiliproteins at the lumenal side of the thylakoid membranes and how their diffusional behavior may influence the energy funneling steps in light harvesting are reported. Confocal microscopy and fluorescence recovery after photobleaching (FRAP) are used to measure the diffusion coefficient of phycoerythrin 545 (PE545), the primary light harvesting protein of Rhodomonas CS24, in vivo. It is concluded that the diffusion of PE545 in the lumen is inhibited, suggesting possible membrane association or aggregation as a potential source of mobility hindrance. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Vener AV  Strålfors P 《IUBMB life》2005,57(6):433-440
Vectorial proteomics is a methodology for the differential identification and characterization of proteins and their domains exposed to the opposite sides of biological membranes. Proteomics of membrane vesicles from defined isolated membranes automatically determine cellular localization of the identified proteins and reduce complexity of protein characterizations. The enzymatic shaving of naturally-oriented, or specifically-inverted sealed membrane vesicles, release the surface-exposed peptides from membrane proteins. These soluble peptides are amenable to various chromatographic separations and to sequencing by mass spectrometry, which provides information on the topology of membrane proteins and on their posttranslational modifications. The membrane shaving techniques have made a breakthrough in the identification of in vivo protein phosphorylation sites in membrane proteins form plant photosynthetic and plasma membranes, and from caveolae membrane vesicles of human fat cells. This approach has also allowed investigation of dynamics for in vivo protein phosphorylation in membranes from cells exposed to different conditions. Vectorial proteomics of membrane vesicles with retained peripheral proteins identify extrinsic proteins associated with distinct membrane surfaces, as well as a variety of posttranslational modifications in these proteins. The rapid integration of versatile vectorial proteomics techniques in the functional characterization of biological membranes is anticipated to bring significant insights in cell biology.  相似文献   

12.
A novel mathematical model of the actin dynamics in living cells under steady-state conditions has been developed for fluorescence recovery after photobleaching (FRAP) experiments. As opposed to other FRAP fitting models, which use the average lifetime of actins in filaments and the actin turnover rate as fitting parameters, our model operates with unbiased actin association/dissociation rate constants and accounts for the filament length. The mathematical formalism is based on a system of stochastic differential equations. The derived equations were validated on synthetic theoretical data generated by a stochastic simulation algorithm adapted for the simulation of FRAP experiments. Consistent with experimental findings, the results of this work showed that (1) fluorescence recovery is a function of the average filament length, (2) the F-actin turnover and the FRAP are accelerated in the presence of actin nucleating proteins, (3) the FRAP curves may exhibit both a linear and non-linear behaviour depending on the parameters of actin polymerisation, and (4) our model resulted in more accurate parameter estimations of actin dynamics as compared with other FRAP fitting models. Additionally, we provide a computational tool that integrates the model and that can be used for interpretation of FRAP data on actin cytoskeleton.  相似文献   

13.
NMR spectra and T1, T2 relaxation times for 1H, 13C and 31P nuclei in membranes of R. rubrum and Rb. sphaeroides recorded at different relative humidity, as well as hydration curves and electron transfer efficiency of these membranes and membranes of E. shaposhnikovii, reveal complicated relations between structural-dynamic and functional characteristics. A number of sites of the electron transfer chain are shown to be under the control of structural-dynamic mechanisms. Different parameters characterizing these membranes at low humidity and during hydration have been established. These findings and analysis of the data from model systems reveal four different stages of hydration. Each of them is associated with specific changes in structure, dynamics, and function of photosynthetic membranes and their components. In the first stage the hydration of some polar groups leads to local changes in the dynamics of the protein component and this influences the recombination between photoactive pigment P and intermediate acceptor QA. The second stage is induced by incorporation of water molecules into the hydrogen bonds between the polar head groups of the lipids and within macromolecules. This results in changes of the dynamics of the membranes, the efficiency of the electron transfer between the quinones and the efficiency of photooxidation of cytochrome c. In the third stage all polar groups are hydrated owing to the appearance of free water with a high dielectric constant. This makes possible lateral mobility of membrane components and changes in distances between the interacting macromolecular components. Therefore, the regulation of photosynthetic processes can be mediated with the participation of mobile carriers. Finally, in the fourth stage, complete humidification provides conditions for regulation of photosynthesis at the cell level. The mechanisms influencing these processes and the efficiency and regulation of electron transfer in various parts of the photosynthetic chain are discussed. Received: 1 August 1996 / Accepted: 4 July 1997  相似文献   

14.
Recent progress in elucidating the structure of higher plants photosynthetic membranes provides a wealth of information. It allows generation of architectural models that reveal well-organized and complex arrangements not only on whole membrane level, but also on the supramolecular level. These arrangements are not static but highly responsive to the environment. Knowledge about the interdependency between dynamic structural features of the photosynthetic machinery and the functionality of energy conversion is central to understanding the plasticity of photosynthesis in an ever-changing environment. This review summarizes the architectural switches that are realized in thylakoid membranes of green plants.  相似文献   

15.
BackgroundFluorescence recovery after photobleaching (FRAP) studies can provide kinetic information about proteins in cells. Single point mutations can significantly affect the binding kinetics of proteins and result in variations in the recovery half time (t50) measured in FRAP experiments. FRAP measurements of linker histone (LH) proteins in the cell nucleus have previously been reported by Brown et al. (2006) and Lele et al. (2006).MethodsWe performed Brownian dynamics (BD) simulations of the diffusional association of the wild-type and 38 single or double point mutants of the globular domain of mouse linker histone H1.0 (gH1.0) to a nucleosome. From these simulations, we calculated the bimolecular association rate constant (kon), the Gibbs binding free energy (ΔG) and the dissociation rate constant (koff) related to formation of a diffusional encounter complex between the nucleosome and the gH1.0.ResultsWe used these parameters, after application of a correction factor to account for the effects of the crowded environment of the nucleus, to compute FRAP recovery times and curves that are in good agreement with previously published, experimentally measured FRAP recovery time courses.ConclusionsOur computational analysis suggests that BD simulations can be used to predict the relative effects of single point mutations on FRAP recovery times related to protein binding.General SignificanceBD simulations assist in providing a detailed molecular level interpretation of FRAP data.  相似文献   

16.
17.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

18.
19.
The nuclear envelope contains >100 transmembrane proteins that continuously exchange with the endoplasmic reticulum and move within the nuclear membranes. To better understand the organization and dynamics of this system, we compared the trafficking of 15 integral nuclear envelope proteins using FRAP. A surprising 30-fold range of mobilities was observed. The dynamic behavior of several of these proteins was also analyzed after depletion of ATP and/or Ran, two functions implicated in endoplasmic reticulum-inner nuclear membrane translocation. This revealed that ATP- and Ran-dependent translocation mechanisms are distinct and not used by all inner nuclear membrane proteins. The Ran-dependent mechanism requires the phenylalanine-glycine (FG)-nucleoporin Nup35, which is consistent with use of the nuclear pore complex peripheral channels. Intriguingly, the addition of FGs to membrane proteins reduces FRAP recovery times, and this also depends on Nup35. Modeling of three proteins that were unaffected by either ATP or Ran depletion indicates that the wide range in mobilities could be explained by differences in binding affinities in the inner nuclear membrane.  相似文献   

20.
Cyanobacteria, the progenitors of plant and algal chloroplasts, enabled aerobic life on earth by introducing oxygenic photosynthesis. In most cyanobacteria, the photosynthetic membranes are arranged in multiple, seemingly disconnected, concentric shells. In such an arrangement, it is unclear how intracellular trafficking proceeds and how different layers of the photosynthetic membranes communicate with each other to maintain photosynthetic homeostasis. Using electron microscope tomography, we show that the photosynthetic membranes of two distantly related cyanobacterial species contain multiple perforations. These perforations, which are filled with particles of different sizes including ribosomes, glycogen granules and lipid bodies, allow for traffic throughout the cell. In addition, different layers of the photosynthetic membranes are joined together by internal bridges formed by branching and fusion of the membranes. The result is a highly connected network, similar to that of higher-plant chloroplasts, allowing water-soluble and lipid-soluble molecules to diffuse through the entire membrane network. Notably, we observed intracellular membrane-bounded vesicles, which were frequently fused to the photosynthetic membranes and may play a role in transport to these membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号