首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Optimization of a series of N-1-cycloalkyl-4-aryl-5-(pyrimidin-4-yl)imidazole inhibitors of p38 kinase is reported. Oral administration of inhibitors possessing a cyclohexan-4-ol or piperidin-4-yl group at N-1 in combination with alkoxy, amino(alkyl), phenoxy and anilino substitution at the 2-position of the pyrimidine was found to potently inhibit LPS-induced TNF in mice and rats. The selectivity of these new inhibitors for p38 kinase versus eight other protein kinases is high and in all cases exceeds that of SB 203580.  相似文献   

2.
Imidazo[1,2-b]pyridazine derivatives from high-throughput screening were developed as IKKβ inhibitors. By the optimization of the 3- and 6-position of imidazo[1,2-b]pyridazine scaffold, cell-free IKKβ inhibitory activity and TNFα inhibitory activity in THP-1 cell increased. Also, these compounds showed high kinase selectivity. The structure–activity relationship was revealed and the interaction model of imidazo[1,2-b]pyridazine compounds with IKKβ was constructed.  相似文献   

3.
A novel series of N-pyridyl amides as potent p38α kinase inhibitors is described. Based on the structural similarities between the initial hit and a well-known imidazole pyrimidine series of p38α inhibitors, potencies within the newly discovered series were quickly improved by installation of an (S)-α-methylbenzyl moiety at the 2-position of the pyridine ring. The proposed binding modes of the new series to p38α were evaluated against SAR findings and provided rationale for further development of this series of molecules.  相似文献   

4.
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.  相似文献   

5.
Novel potent trisubstituted pyridazine inhibitors of p38 MAP (mitogen activated protein) kinase are described that have activity in both cell-based assays of cytokine release and animal models of rheumatoid arthritis. They demonstrated potent inhibition of LPS-induced TNF-alpha production in mice and exhibited good efficacy in the rat collagen induced arthritis model.  相似文献   

6.
The p38 mitogen-activated protein (MAP) kinase is the central signaling molecule regulating the cellular response to a multitude of external stimuli. Thus, inhibitors of this enzyme are postulated to have significant therapeutic potential for the treatment of some diseases, especially where aberrant cytokine signaling is the driver of disease. Here we established a simple inhibitor screening method for a human protein by using bacteria in combination with the growth recovery as an index. The screening successfully identified benzyl coumarin derivatives as p38 inhibitors. These compounds not only rescue growth retardation of p38-transformed bacteria but also inhibit p38 activity in vitro and in human cells. This study demonstrates that this is a promising and economical inhibitor screening method not only for p38 but also for other proteins.  相似文献   

7.
The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.  相似文献   

8.
Potent tetrapeptidic inhibitors of the HCV NS3 protease have been developed incorporating 4-hydroxy-cyclopent-2-ene-1,2-dicarboxylic acid as a new N-acyl-l-hydroxyproline mimic. The hydroxycyclopentene template was synthesized in eight steps from commercially available (syn)-tetrahydrophthalic anhydride. Three different amino acids were explored in the P1-position and in the P2-position the hydroxyl group of the cyclopentene template was substituted with 7-methoxy-2-phenyl-quinolin-4-ol. The P3/P4-positions were then optimized from a set of six amino acid derivatives. All inhibitors were evaluated in an in vitro assay using the full-length NS3 protease. Several potent inhibitors were identified, the most promising exhibiting a K(i) value of 1.1nM.  相似文献   

9.
With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety. The polar substitution is also advantageous for decreasing toxicity, providing inhibitors with higher therapeutic indices. The best inhibitor among this series, (S)-6-[2-(4-aminophenyl)-ethyl]-(3-(2-tert-butyl-5-methyl-phenylsulfanyl)-4-hydroxy-6-isopropyl-5,6-dihydro-pyran-2-one (34S), exhibited an EC50 of 200 nM with a therapeutic index of >1000. More importantly, these non-peptidic inhibitors, 16S and 34S, appear to offer little cross-resistance to the currently marketed peptidomimetic PR inhibitors. The selected inhibitors tested in vitro against mutant HIV PR showed a very small increase in binding affinities relative to wild-type HIV PR. Cmax and absolute bioavailability of 34S were higher and half-life and time above EC95 were longer compared to 16S. Thus 34S, also known as PD 178390, which displays good antiviral efficacy, promising pharmacokinetic characteristics and favorable activity against mutant enzymes and CYP3A4, has been chosen for further preclinical evaluation.  相似文献   

10.
Cdk5/p25 has emerged as a principle therapeutic target for numerous acute and chronic neurodegenerative diseases, including Alzheimer’s disease. A structure-activity relationship study of 2,4-diaminothiazole inhibitors revealed that increased Cdk5/p25 inhibitory activity could be accomplished by incorporating pyridines on the 2-amino group and addition of substituents to the 2- or 3-position of the phenyl ketone moiety. Interpretation of the SAR results for many of the analogs was aided through in silico docking with Cdk5/p25 and calculating protein hydrations sites using WaterMap. Finally, improved in vitro mouse microsomal stability was also achieved.  相似文献   

11.
General screening for inhibitors of microvessel growth in vitro in the rat aortic ring assay led to the discovery of a novel series of thiadiazole pyridazine compounds with potential anti-angiogenic activity. Chemical optimization produced orally active compounds with potent in vitro and in vivo anti-angiogenesis and anti-tumor activities.  相似文献   

12.
The synthesis and biological evaluation of novel Tie-2 kinase inhibitors are presented. Based on the pyrrolopyrimidine chemotype, several new series are described, including the benzimidazole series by linking a benzimidazole to the C5-position of the 4-amino-pyrrolopyrimidine core and the ketophenyl series synthesized by incorporating a ketophenyl group to the C5-position. Medicinal chemistry efforts led to potent Tie-2 inhibitors. Compound 15, a ketophenyl pyrrolopyrimidine urea analog with improved physicochemical properties, demonstrated favorable in vitro attributes as well as dose responsive and robust oral tumor growth inhibition in animal models.  相似文献   

13.
Inhibition of the p38 map kinase pathway has been shown to be beneficial in the treatment of inflammatory diseases. The first class of potent p38 kinase inhibitors was the pyridinylimidazole compounds from SKB. Since then several pyridinylimidazole-based compounds have been shown to inhibit activated p38 kinase in vitro and in vivo. We have developed a novel series of pyridinylimidazole-based compounds, which potently inhibit the p38 pathway by binding to unactivated p38 kinase and only weakly inhibiting activated p38 kinase activity in vitro.  相似文献   

14.
p38alpha Mitogen Activated Protein Kinase (MAP kinase) is an intracellular soluble serine threonine kinase. p38alpha kinase is activated in response to cellular stresses, growth factors and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). The central role of p38alpha activation in settings of both chronic and acute inflammation has led efforts to find inhibitors of this enzyme as possible therapies for diseases such as rheumatoid arthritis, where p38alpha activation is thought to play a causal role. Herein, we report structure-activity relationship studies on a series of indole-based heterocyclic inhibitors that led to the design and identification of a new class of p38alpha inhibitors.  相似文献   

15.
We have previously shown that p38 mitogen-activated protein kinase (MAPK) inhibitors, which block the production and action of inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1), are effective in models of bone and cartilage degradation. To further investigate the role of p38 MAPK, we have studied its activation in osteoblasts and chondrocytes, following treatment with a panel of proinflammatory and osteotropic agents. In osteoblasts, significant activation of p38 MAPK was observed following treatment with IL-1 and TNF, but not parathyroid hormone, transforming growth factor-beta (TGF-beta), 1,25(OH)(2)D(3), insulin-like growth factor-1 (IGF-1), or IGF-II. Similar results were obtained using primary bovine chondrocytes and an SV40-immortalized human chondrocyte cell line, T/C28A4. SB 203580, a selective inhibitor of p38 MAPK, inhibited IL-1 and TNF-induced p38 MAPK activity and IL-6 production (IC(50)s 0.3--0.5 microM) in osteoblasts and chondrocytes. In addition, IL-1 and TNF also activated p38 MAPK in fetal rat long bones and p38 MAPK inhibitors inhibited IL-1- and TNF-stimulated bone resorption in vitro in a dose-dependent manner (IC(50)s 0.3--1 microM). These data support the contention that p38 MAPK plays a central role in regulating the production of, and responsiveness to, proinflammatory cytokines in bone and cartilage. Furthermore, the strong correlation between inhibition of kinase activity and IL-1 and TNF-stimulated biological responses indicates that selective inhibition of the p38 MAPK pathway may have therapeutic utility in joint diseases such as rheumatoid arthritis (RA).  相似文献   

16.
SAR studies led to the identification of 4-(3-benzoylamino-6-methyl-anilino)quinazolines as potent and selective inhibitors of p38 MAP kinase. Further optimisation led to the identification of a series of 4-(3-benzoylamino-6-methyl-anilino)pyrimidines as potent inhibitors of the p38 MAP kinase signalling pathway in vitro and in vivo.  相似文献   

17.
The structure of the mammalian multi-synthetase complex was investigated in vitro using qualitative and quantitative approaches. This macromolecular assemblage comprises the bifunctional glutamyl-prolyl-tRNA synthetase, the seven monospecific isoleucyl, leucyl, methionyl, glutaminyl, lysyl, arginyl and aspartyl-tRNA synthetases, and the three auxiliary p43, p38 and p18 proteins. The scaffold p38 protein was expressed in Escherichia coli and purified to homogeneity as a His-tagged protein. The different components of the complex were shown to associate in vitro with p38 immobilized on Ni(2+)-coated plates. Interactions between peripheral enzymes and p38 are referred to as central interactions, as opposed to lateral interactions between peripheral enzymes. Kinetic parameters of the interactions were determined by the means of a biosensor-based approach. The two dimeric proteins LysRS and AspRS were found to tightly bind to p38, with a K(d) value of 0.3 and 4.7 nM, respectively. These interactions involved the catalytic core of the enzymes. By contrast, binding of ArgRS or GlnRS to p38 was much weaker (>5 microM). ArgRS and p43, two peripheral components, were shown to interact with moderate affinity (K(d)=93 nM). Since all the components of the complex are tightly associated within this particle, lateral interactions were believed to contribute to the stabilization of this assemblage. Using an in vitro binding assay, concomitant association of several components of the complex on immobilized p38 could be demonstrated, and revealed the involvement of synergistic effects for association of weakly interacting proteins. Taking into account the possible synergy between central and lateral contributions, a sub-complex containing p38, p43, ArgRS and GlnRS was reconstituted in vitro. These data provide compelling evidence for an ordered and concerted mechanism of complex assembly.  相似文献   

18.
Experiments carried out under the conditions adopted showed the strong affinity of aminopyridazine derivatives for the eicosanoids TXA2 and PGI2. But this affinity depended on the chemical structure of the molecule: a small change in the radical grafted onto the pyridazine ring could completely modify the pharmacological activity of the molecule. Consequently it should be possible to control the properties of pyridazine derivatives according to pharmacological needs. Thus: --pyridazin-3-one derivatives were mainly active on TXA2 biosynthesis: 2-aminoalkyl 5-arylidene 6-methyl (4H) pyridazin-3-ones inhibited the TXA2-synthesizing activity of cardiac tissue whereas 3-amino 4,6-diaryl pyridazin-3-ones were specific inhibitors of the TXA2 synthetase in vitro, but these effects were weak. --pyridazine derivatives were devoid of any effect on the TXA2-synthesizing activity of cardiac tissue: they acted on either TXA2 synthetase or PGI2 synthetase according to the radicals grafted onto the pyridazine ring. --none of the compounds under study was active on the PGI2-synthesizing activity of cardiac tissue.  相似文献   

19.
p38 is a member of the mitogen-activated protein kinase (MAPK) family of serine/threonine kinases, which is activated by cellular stressors and has been shown to be a critical enzyme in the synthesis and action of proinflammatory cytokines, tumor necrosis factor-a (TNF-alpha) and interleukin-1beta (IL-1beta). A group of pyridinyl imidazole compounds such as SB202190 have been identified as selective inhibitors of p38 that bind directly to the ATP pocket of the enzyme. These compounds inhibit the p38 kinase activity, block TNF-alpha and IL-1beta secretion both in vivo and in vitro and are found to be effective in animal models of arthritis, bone resorption, and endotoxin shock. We postulated that other classes of compounds capable of competing the binding of pyridinyl imidazole with p38 enzyme could have efficacy in the treatment of inflammatory diseases. Therefore, a simple and robust assay was developed to measure the ability of small molecules to inhibit the binding of tritium-labeled pyridinyl imidazole, SB202190, to recombinant p38 kinase. For assay development, the human p38 gene was cloned in baculovirus and then expressed in insect cells. Tritiated SB202190 was synthesized and used as the p38 ligand for a competitive filter binding assay. This assay has been used successfully to screen both synthetic and combinatorial chemical libraries for other classes of p38 kinase inhibitors.  相似文献   

20.
To improve the in vitro potency of the c-Src inhibitor 1a and to address its hERG liability, a structure-activity study was carried out, focusing on two regions of the lead compound. The blockade of the delayed cardiac current rectifier K(+) (I(Kr)) channel was overcome by replacing the ethylenediamino group with an amino alcohol group at the 7-position. In addition, modifying the substituents at the 5-position and the side chain groups on the amino alcohols at the 7-position enhanced the intracellular c-Src inhibitory activity and increased central nervous system (CNS) penetration. In the present study, 6l exhibited significant in vivo efficacy in a middle cerebral artery (MCA) occlusion model in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号