首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 440-nucleotide adenovirus type 5 i-leader sequence, encoding a 13.6-kilodalton protein, is located between the second and third components of the tripartite leader sequence. It appears primarily on the L1 family of mRNAs. To study its function, we constructed two point mutations within the i leader. pm382 lacks the wild-type i-leader splice acceptor and failed to splice the leader onto L1 mRNAs. pm383 lacks the ATG used for translation of the i-leader protein; it synthesized i-leader-containing mRNAs, but failed to produce detectable levels of the polypeptide. Both mutants exhibited modestly reduced yields in some but not all cell lines tested and accumulated slightly elevated levels of L1 mRNA and L1 52- and 55-kilodalton proteins in infected cells. Mutant phenotypes were consistently more pronounced in pm382- than in pm383-infected cells. In wild-type virus-infected cells, L1 mRNAs lacking the i leader displayed a half-life of about 26 h, whereas L1 mRNAs containing the leader were much less stable, with a half-life of less than 4 h. In pm383-infected cells (ATG mutant), L1 mRNAs containing the i leader exhibited a half-life of 26 h. The abnormally long half-life of pm383-encoded L1 mRNAs containing a mutant i leader was not reduced by coinfection with wild-type virus, suggesting that synthesis of the i-leader protein leads to destabilization of the i-leader-containing L1 mRNA undergoing translation.  相似文献   

2.
3.
Biosynthesis of adenovirus type 2 i-leader protein.   总被引:2,自引:1,他引:1       下载免费PDF全文
The i-leader is a 440-base-pair sequence located between 21.8 and 23.0 map units on the adenovirus type 2 genome and is spliced between the second and third segments of the major tripartite leader in certain viral mRNA molecules. The i-leader contains an open translational reading frame for a hypothetical protein of Mr about 16,600, and a 16,000-Mr polypeptide (16K protein) has been translated in vitro on mRNA selected with DNA containing the i-leader (A. Virtanen, P. Alestr?m, H. Persson, M. G. Katze, and U. Pettersson, Nucleic Acids Res. 10:2539-2548, 1982). To determine whether the i-leader protein is synthesized during productive infection and to provide an immunological reagent to study the properties and functions of the i-leader protein, we prepared antipeptide antibodies directed to a 16-amino acid synthetic peptide which is encoded near the N terminus of the hypothetical i-leader protein and contains a high acidic amino acid and proline content. Antipeptide antibodies immunoprecipitated from extracts of adenovirus type 2-infected cells a major 16K protein that comigrated with a 16K protein translated in vitro. Partial N-terminal amino acid sequence analysis by Edman degradation of radiolabeled 16K antigen showed that methionine is present at residue 1 and leucine is present at residues 8 and 10, as predicted from the DNA sequence, establishing that the 16K protein precipitated by this antibody is indeed the i-leader protein. Thus, the i-leader protein is a prominent species that is synthesized during productive infection. The i-leader protein is often seen as a doublet on polyacrylamide gels, suggesting that either two related forms of i-leader protein are synthesized in infected cells or that a posttranslational modification occurs. Time course studies using immunoprecipitation analysis with antipeptide antibodies revealed that the E1A 289R T antigen and the E1B-19K (175R) T antigen are synthesized beginning at 2 to 3 and 4 to 5 h postinfection, respectively, whereas the i-leader protein is synthesized starting at about 8 h postinfection and continues unabated until at least 25 h postinfection. The i-leader protein is very stable, as determined by pulse-chase labeling experiments, and accumulates continuously from 8 to 25 h postinfection, as shown by immunoblot analysis. The synthesis of i-leader protein does not depend upon viral DNA replication. Thus, the i-leader protein is a viral gene product of unknown function and high stability that is made in large quantities at intermediate times of productive infection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We report the sequence of a 1164 nucleotide long DNA segment, located between map positions 59.5 and 62.8 on the adenovirus type 2 genome. The sequence comprises the 701 nucleotides long 3' non-coding region of the hexon mRNA as well as several important processing signals. The sequence revealed unexpectedly that the 3' non-coding region of the hexon mRNA contains a 609 nucleotide long uninterrupted translational reading frame following a potential initiator AUG. A late 14S mRNA, corresponding to the open reading frame, could be identified by S1 nuclease mapping and electronmicroscopy. The mRNA shares a poly(A) addition site with the hexon and pVI mRNAs, and carries a leader sequence which is related, and probably identical, to the tripartite leader, found in late adenovirus mRNAs. The junction between the leader and the body of this novel mRNA is located within the coding part of the hexon gene.  相似文献   

5.
J A Engler  M S Hoppe  M P van Bree 《Gene》1983,21(1-2):145-159
The nucleotide sequence of a cloned DNA segment encoding the early region 2b from the group B human adenovirus Ad7 has been determined. When compared to Ad2, a group C adenovirus, these sequences were found to be approx. 80% homologous within the l-strand gene-coding regions. Most changes are transitions or transversions, although several deletions/insertions also occur within the N-terminal domain of one of the coding regions. The substantial nucleotide homology results in a high degree of amino acid conservation in the predicted polypeptides encoded by the early region 2b genes. Two major open reading frames, corresponding to the Mr 87000 and Mr 140000 polypeptides of Ad2, are found in the l strand of Ad7 between genome coordinates 28.5 to 23.1 and 13.8, respectively. The r strand of the DNA in this region encodes the three leader segments joined to the 5' end of the most late viral mRNAs, and also encodes the i-leader segment found between the second and third leaders on some mRNAs. The positions of the donor and acceptor splice sites of the three leaders are conserved and can be identified by homology to Ad2. Only two of the unidentified open reading frames (URF) in Ad2 (Gingeras et al., J. Biol. Chem., in press) can be found in Ad7. URF1, encoding an Mr 13500 polypeptide at genome coordinate 17, is predominantly conserved in nucleotide and amino acid sequence, but contains one half as many arginine amino acids as does URF1 of Ad2. URF2, encoding an Mr 13600 protein which lies within the i-leader region, is not well conserved in either nucleotide or amino acid sequence.  相似文献   

6.
7.
8.
9.
S Zain  J Sambrook  R J Roberts  W Keller  M Fried  A R Dunn 《Cell》1979,16(4):851-861
Fiber mRNA of adenovirus 2 has been used as a template for RNA-dependent DNA polymerase. The resulting cDNA/RNA hybrids have been inserted at the Pst I site of the plasmid vector pBR322 after A:T tailing. One recombinant plasmid, pJAW 43, has been characterized in detail and shown to contain sequences from the main body of fiber mRNA, the three leaders common to most late adenoviral mRNAs and a fourth leader found in some species of fiber mRNA. The complete DNA sequence of the leader region has been determined and does not contain the initiation codon AUG, although this codon does occur immediately downstream from the junction between the fourth leader and the main body of the fiber mRNA. The first leader (map coordinate 16.6) is 41 nucleotides long, the second (from 19.6) is 71 nucleotides, the third (from 26.6) is 88 nucleotides and the fourth (from 78.5) is 181 nucleotides. The location of junctions between viral leaders and intervening sequences has been determined by reference, where possible, to sequences of the adenovirus 2 genome. Although the presence of short repeated sequences at the boundaries of intervening sequences and leaders makes it impossible to locate the splice point unambiguously, all of the leader-intervening sequence junctions can be arranged to stress a common feature--the presence of the dinucleotides GT and AG at the 5' and 3' ends, respectively, of the intervening sequences. This prototype sequence, which has also been recognized at or near the splice points in other eucaryotic systems, is possibly part of a larger unit which serves as a recognition site for specific excision-ligation events that ultimately lead to the production of mature mRNAs.  相似文献   

10.
Factors governing the expression of a bacterial gene in mammalian cells.   总被引:34,自引:13,他引:21       下载免费PDF全文
Cultured monkey kidney cells transfected with simian virus 40 (SV40)-pBR322-derived deoxyribonucleic acid (DNA) vectors containing the Escherichia coli gene (Ecogpt, or gpt) coding for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT) synthesize the bacterial enzyme. This paper describes the structure of the messenger ribonucleic acids (mRNA's) formed during the expression of gpt and an unexpected feature of the nucleotide sequence in the gpt DNA segment. Analyses of the gpt-specific mRNA's produced during infection of CV1 cells indicate that in addition to the mRNA's expected on the basis of known simian virus 40 RNA splicing patterns, there is a novel SV40-gpt hybrid mRNA. The novel mRNA contains an SV40 leader segment spliced to RNA sequences transcribed from the bacterial DNA segment. The sequence of the 5'-proximal 345 nucleotides of the gpt DNA segment indicates that the only open translation phase begins with an AUG about 200 nucleotides from the end of the gpt DNA. Two additional AUGs as well as translation terminator codons in all three phases precede the XGPRT initiator codon. Deletion of the two that are upstream of the putative start codon increases the level of XGPRT production in transfected cells; deletion of sequences that contain the proposed XGPRT initiator AUG abolishes enzyme production. Based on the location of the XGPRT coding sequence in the recombinants and the structure of the mRNA's, we infer that the bacterial enzyme can be translated from an initiator AUG that is 400 to 800 nucleotides from the 5' terminus of the mRNA and preceded by two to six AUG triplets.  相似文献   

11.
12.
The DNA sequence and studies on the expression of the NUC1 gene from Saccharomyces cerevisiae are presented. The NUC1 locus is located in the distal portion of the left arm of Chromosome X and encodes the major nuclease found in mitochondria. The inferred amino acid sequence of NUC1 predicts that the nuclease is basic, rich in prolines, of average hydrophobicity, and has a molecular weight for the primary translation product of 37,209 daltons. NUC1 is very poorly expressed, consistent with the codon usage bias determined from the DNA sequence and our previous determination of the number of enzyme molecules per cell. Mapping of the 5' terminus of the NUC1 mRNA reveals that the mRNA has a long 400 base untranslated leader in which are found three open reading frames, each initiated by an AUG. The possibility that these upstream open reading frames contribute to the poor expression of the NUC1 gene is discussed.  相似文献   

13.
mRNAs from human adenovirus 2 early region 4   总被引:26,自引:16,他引:10       下载免费PDF全文
The molecular structure of the mRNAs from early region 4 of human adenovirus 2 has been studied by Northern blot analysis, S1 nuclease analysis, and sequence analysis of cDNA clones. The results make it possible to identify four different splice donor sites and six different splice acceptor sites. The structure of 12 different mRNAs can be deduced from the analysis. The mRNAs have identical 5' and 3' ends and are thus likely to be processed from a common mRNA precursor by differential splicing. The different mRNA species are formed by the removal of one to three introns, and they all carry a short 5' leader segment. The introns appear to serve two functions; they either place a 5' leader segment in juxtaposition with an open reading frame or fuse two open translational reading frames. The early region 4 mRNAs can encode at least seven unique polypeptides.  相似文献   

14.
We have determined the nucleotide sequence of a region of adenovirus type 5 (Ad5) DNA located between map positions 61.7 and 71.4, which covers the gene form the 72 kD DNA binding protein (DBP) and the sequence encoding the amino-terminal part of the 100 kD protein. Sequence analysis of cDNA copies of DBP mRNA revealed the existence of two abundant species of spliced mRNA molecules. One species consists of two short leader sequences from positions 75.2 (67 and 68 nucleotides long) and 68.8 (77 nucleotides long), respectively, and the main body of the RNA molecules. The other species contains only the leader sequence from position 75.2 and the main body. The amino acid sequence of DBP is encoded entirely by a long open reading frame of 1587 nucleotides in the main body of DBP mRNA. From the nucleotide sequence of the DBP gene it can be derived that DBP contains 529 amino acid residues and has an actual molecular weight of 59,049 daltons. The sites of mutation in the mutants H5hr404 and H5ts125 were determined at the nucleotide level. Single nucleotide alterations were detected in H5hr404 and H5ts125 in the sequences corresponding to the amino-terminal part and the carboxy-terminal part of DBP, respectively. The implications of these mutations are discussed.  相似文献   

15.
Expression vectors that yield mono-, di-, and tricistronic mRNAs upon transfection of COS-1 cells were used to assess the influence of the 5' nontranslated regions (5'NTRs) on translation of reporter genes. A segment of the 5'NTR of encephalomyocarditis virus (EMCV) allowed translation of an adjacent downstream reporter gene (CAT) regardless of its position in the mRNAs. A deletion in the EMCV 5'NTR abolishes this effect. Poliovirus infection completely inhibits translation of the first cistron of a dicistronic mRNA that is preceded by the capped globin 5'NTR, whereas the second cistron preceded by the EMCV 5'NTR is still translated. We conclude that the EMCV 5'NTR contains an internal ribosomal entry site that allows cap-independent initiation of translation. mRNA containing the adenovirus tripartite leader is also resistant to inhibition of translation by poliovirus.  相似文献   

16.
H van Ormondt  J Maat  C P van Beveren 《Gene》1980,11(3-4):299-309
The sequence of the leftmost 11.3% of the non-oncogenic human adenovirus type 5 (Ad5) DNA has been determined. This segment contains the entire early region E1 of the Ad5 genome which has been shown to be involved in in vitro transformation of non-permissive rodent cells (Van der Eb et al., 1980). From the DNA sequence, and from the mRNA sequence data obtained by Perricaudet et al, (1979, 1980) for the E1 mRNAs from the closely related adenovirus type 2 (Ad2), it is possible to predict the primary structure of the polypeptides encoded by this region. The function of these proteins in cell transformation is discussed. From the positions of mapped restriction endonuclease sites and termini of RNA segments in the nucleotide sequence the length of the Ad5 DNA is estimated to be 36.6 kb.  相似文献   

17.
Nagase T  Nishio SY  Itoh T 《Plasmid》2007,58(3):249-260
Translation initiation of mRNA encoding the Rep protein of the ColE2 plasmid required for initiation of plasmid DNA replication is fairly efficient in Escherichia coli cells despite the absence of a canonical Shine-Dalgarno sequence. To define sequences and structural elements responsible for translation efficiency of the Rep mRNA, a series of rep-lacZalpha translational fusions bearing various mutations in the region encoding the leader region of the Rep mRNA was generated and tested for the translation activity by measuring the beta-galactosidase activity. We showed that the region rich in A and U between the stem-loop II structure and GA cluster sequence, formation of the stem-loop II structure, but not its sequence, and the region between the GA cluster sequence and initiation codon are important along with the GA cluster sequence for efficient translation of the Rep protein. The existence of these important regions in the leader region of the Rep mRNA may explain the mechanism of inhibition of the Rep protein translation by an antisense RNA (RNAI), which is complementary to the leader region.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号