共查询到20条相似文献,搜索用时 0 毫秒
1.
Christos C. Sfetsas Leonidas Milios Katholiki Skopelitou Anastasia Venieraki Rodanthi Todou Emmanouil Flemetakis Panagiotis Katinakis Nikolaos E. Labrou 《Enzyme and microbial technology》2009,45(5):397-404
Haloalkane dehalogenases (DHAs, E.C. 3.8.1.5) are very promising biocatalytic tools for the bioremediation of environmental pollutants which consists of haloalkanes. In the present work, we investigated the DHA from Bradyrhizobium japonicum USDA110 (BjDHA). The dehalogenase activity of B. japonicum USDA110 and RT-PCR analysis revealed that the BjDHA gene expression is induced by 1,2-dibromoethane (1,2-DBE) during the early exponential phase. The BjDHA gene was cloned, expressed in Escherichia coli BL21 (DE3) and characterized. The enzyme catalyzes the irreversible hydrolysis of a variety of haloalkanes to the corresponding alcohol, halide, and a hydrogen ion. The catalytic properties of the recombinant enzyme were investigated and the kinetic parameters (Km, kcat) for a number of substrates were determined. The results showed that the BjDHA displays wide substrate specificity towards haloalkanes and particular high activity towards 1,2-DBE. The enzyme has a different catalytic triad topology compared to the Xanthobacter haloalkane dehalogenase and is more similar to the Rhodococcus enzyme. In addition, consistent with its broad specificity, the BjDHA has a substantially larger and more polar active site cavity compared to the Xanthobacter and Rhodococcus enzymes and as a consequence, BjDHA is able to dehalogenate longer and polar compounds. These properties make this enzyme very promising bioremediation tool for environmental applications. 相似文献
2.
A heterologous gene probe encoding the α and β subunits of the Pseudomonas cepacia protocatechuate 3,4-dioxygenase (PCD) was used to detect its homolog in the genome of Bradyrhizobium japonicum USDA110. Three cosmid clones carrying a 2.2-kb BamHI insert showed high levels of PCD activity. SacI digestion of one of the genomic clones, pBjG17, produced a 2.5-kb insert DNA that complemented a PCD mutant of P. cepacia. 相似文献
3.
A mandelonitrile hydrolase bll6402 from Bradyrhizobium japonicum USDA110 was predicted by rational genome mining, i.e. combining traditional genome mining with functional analysis of the genetic organization of the putative nitrilase gene within the chromosome of microorganisms. This putative gene was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a molecular mass of about 37kDa. The molecular weight of the holoenzyme was about 455kDa, suggesting that nitrilase bll6402 self-aggregated to the active form with native structure being 12 subunits of identical size. This nitrilase was most active toward mandelonitrile with V(max) and K(m) for mandelonitrile being 44.7U/mg and 0.26mM, respectively. The k(cat) and overall catalytic efficiency k(cat)/K(m) were 27.0s(-1) and 1.04x10(5)M(-1)s(-1), indicating that nitrilase bll6402 is very active for the hydrolysis of mandelonitrile to mandelic acid. Nitrilase bll6402 also effectively hydrolyzed several mandelonitrile derivatives. 相似文献
4.
Synthesis of a Low-Molecular-Weight Form of Exopolysaccharide by Bradyrhizobium japonicum USDA 110 下载免费PDF全文
A novel extracellular low-molecular-weight polysaccharide was detected as a contaminant within extracellular cyclic β-1,6-β-1,3-glucan preparations from Bradyrhizobium japonicum USDA 110 cultures. Compositional analysis, methylation analysis, and nuclear magnetic resonance analysis revealed that this low-molecular-weight polysaccharide was composed of the same pentasaccharide repeating unit previously described for the high-molecular-weight form of the exopolysaccharide (EPS) synthesized by B. japonicum strains. Mass spectrometry analysis indicated that the size of this low-molecular-weight form of EPS was consistent with a dimeric form of the pentasaccharide repeating unit. 相似文献
5.
A novel extracellular low-molecular-weight polysaccharide was detected as a contaminant within extracellular cyclic beta-1,6-beta-1,3-glucan preparations from Bradyrhizobium japonicum USDA 110 cultures. Compositional analysis, methylation analysis, and nuclear magnetic resonance analysis revealed that this low-molecular-weight polysaccharide was composed of the same pentasaccharide repeating unit previously described for the high-molecular-weight form of the exopolysaccharide (EPS) synthesized by B. japonicum strains. Mass spectrometry analysis indicated that the size of this low-molecular-weight form of EPS was consistent with a dimeric form of the pentasaccharide repeating unit. 相似文献
6.
7.
Mathis JN Barbour WM Miller TB Israel DW Elkan GH 《Applied and environmental microbiology》1986,52(1):81-85
We have isolated a colonial derivative of Bradyrhizobium japonicum USDA 110 (designated MN-110) that is both mannitol utilizing and N(2) fixing. Derivative MN-110 showed growth on mannitol and glucose similar to that of non-N(2)-fixing, mannitol-utilizing L2-110. Derivative MN-110 showed high constitutive and induced d-mannitol dehydrogenase activity (similar to L2-110) relative to N(2)-fixing, non-mannitol-utilizing I-110. Hybridization to EcoRI and HindIII total DNA digests with cloned USDA 110 nif DK and nif H genes revealed similar patterns for non-N(2)-fixing mannitol-utilizing derivative L1-110 and derivative MN-110. Symbiotic tests with soybean cultivars Ransom and Lee indicate MN-110 to be a superior N(2)-fixing derivative compared with derivative I-110 and the parent strain USDA 110. However, these differences were not revealed when comparing 28-day-old soybean-B. japonicum associations but were apparent in 49-day-old associations. It was apparent from this work that mannitol utilization was not necessarily correlated to symbiotic effectiveness in B. japonicum and that gene rearrangements were not responsible for differences in N(2) fixation between L1-110 or L2-110 and MN-110. 相似文献
8.
Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA. 相似文献
9.
Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. 总被引:7,自引:0,他引:7
Takakazu Kaneko Yasukazu Nakamura Shusei Sato Kiwamu Minamisawa Toshiki Uchiumi Shigemi Sasamoto Akiko Watanabe Kumi Idesawa Mayumi Iriguchi Kumiko Kawashima Mitsuyo Kohara Midori Matsumoto Sayaka Shimpo Hisae Tsuruoka Tsuyuko Wada Manabu Yamada Satoshi Tabata 《DNA research》2002,9(6):189-197
The complete nucleotide sequence of the genome of a symbiotic bacterium Bradyrhizobium japonicum USDA110 was determined. The genome of B. japonicum was a single circular chromosome 9,105,828 bp in length with an average GC content of 64.1%. No plasmid was detected. The chromosome comprises 8317 potential protein-coding genes, one set of rRNA genes and 50 tRNA genes. Fifty-two percent of the potential protein genes showed sequence similarity to genes of known function and 30% to hypothetical genes. The remaining 18% had no apparent similarity to reported genes. Thirty-four percent of the B. japonicum genes showed significant sequence similarity to those of both Mesorhizobium loti and Sinorhizobium meliloti, while 23% were unique to this species. A presumptive symbiosis island 681 kb in length, which includes a 410-kb symbiotic region previously reported by G?ttfert et al., was identified. Six hundred fifty-five putative protein-coding genes were assigned in this region, and the functions of 301 genes, including those related to symbiotic nitrogen fixation and DNA transmission, were deduced. A total of 167 genes for transposases/104 copies of insertion sequences were identified in the genome. It was remarkable that 100 out of 167 transposase genes are located in the presumptive symbiotic island. DNA segments of 4 to 97 kb inserted into tRNA genes were found at 14 locations in the genome, which generates partial duplication of the target tRNA genes. These observations suggest plasticity of the B. japonicum genome, which is probably due to complex genome rearrangements such as horizontal transfer and insertion of various DNA elements, and to homologous recombination. 相似文献
10.
J M Bravo M Perzl T H?rtner E L Kannenberg M Rohmer 《European journal of biochemistry》2001,268(5):1323-1331
The nitrogen-fixing, symbiotic root-nodule forming bacterium Bradyrhizobium japonicum USDA 110 contained gammacerane derivatives next to triterpenoids of the hopane series. Diploptene, diplopterol, 2 beta-methyldiplopterol, aminobacteriohopanetriol and adenosylhopane were accompanied by tetrahymanol and the corresponding novel methylated homologues 2 beta-methyltetrahymanol, 20 alpha-methyltetrahymanol, and 2 beta,20 alpha-dimethyltetrahymanol. Incorporation of [(2)H(3)]methyl-L-methionine indicated that the additional methyl groups originated from methionine, probably with S-adenosylmethionine acting as methyl donor, with retention of the three deuterium atoms. The simultaneous presence of hopane and gammacerane derivatives seems a characteristic feature of the genus Bradyrhizobium and the phylogenetically closely related Rhodopseudomonas palustris. 相似文献
11.
Nod factors (Lipo-chitooligosaccharides, or LCOs) act as bacteria-to-plant signal molecules that modulate early events of the Bradyrhizobium-soybean symbiosis. It is known that low root zone temperature inhibits the early stages of this symbiosis; however, the effect of low soil temperature on bacteria-to-plant signaling is largely uninvestigated. We evaluated the effect of low growth temperatures on the production kinetics of Nod factor (LCO) by B. japonicum. Two strains of B. japonicum, 532C and USDA110, were tested for ability to synthesize Nod Bj-V (C(18:1), MeFuc) at three growth temperatures (15, 17 and 28 degrees C). The greatest amounts of the major Nod factor, Nod Bj-V (C(18:1), MeFuc), were produced at 28 degrees C for both strains. At 17 and 15 degrees C, the Nod factor production efficiency, per cell, of B. japonicum 532C and USDA110 was markedly decreased with the lowest Nod factor concentration per cell occurring at 15 degrees C. Strain 532C was more efficient at Nod factor production per cell than strain USDA 110 at all growth temperatures. The biological activity of the extracted Nod factor was unaffected by culture temperature. This study constitutes the first demonstration of reduced Nod factor production efficiency (per cell production) under reduced temperatures, suggesting another way that lower temperatures inhibit establishment of the soybean N(2) fixing symbiosis. 相似文献
12.
13.
14.
Greenhouse experiments were conducted to evaluate the effect of Nod factor Nod Bj-V (C18:1, MeFuc) of Badyrhizobium japonicum on the growth of soybean and corn. Three-day-old seedlings of soybean and corn were grown in hydroponic solutions containing four concentrations (0, 10(-7), 10(-9) or 10(-11) M) of Nod factor. After 7 d of treatment, Nod factor enhanced soybean and corn biomass. Nod factor elicited profound effects on root growth resulting in 34-44% longer roots in soybean. More detailed analyses of the roots, using a scanner based image analysis system, revealed that Nod factor increased the total length, projected area and surface area of the roots and decreased the diameter of soybean roots, while it increased the total length of corn roots. Stem injection of soybean plants with 10(-7) M Nod factor resulted in increased dry matter accumulation. These results suggest that Nod factor, besides mediating early stages of nodulation, has more general plant growth-promoting effects. 相似文献
15.
Zhu D Mukherjee C Yang Y Rios BE Gallagher DT Smith NN Biehl ER Hua L 《Journal of biotechnology》2008,133(3):327-333
A nitrilase gene blr3397 from Bradyrhizobium japonicum USDA110 was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a single band of about 34.5kD on SDS-PAGE. The molecular weight of the holoenzyme was about 340kD as determined by light scattering analysis, suggesting that nitrilase blr3397 self-aggregated to an active form with the native structure being a decamer. The V(max) and K(m) for phenylacetonitrile were 3.15U/mg and 4.36mM, respectively. The catalytic constant k(cat) and specificity constant k(cat)/K(m) were 111min(-1) and 2.6x10(4)min(-1)M(-1). This nitrilase is most active toward the hydrolysis of hydrocinnamonitrile among the tested substrates (4.3 times that of phenylacetonitrile). The nitrilase blr3397 shows higher activity towards the hydrolysis of aliphatic nitriles than that for the aromatic counterparts, and can be characterized as an aliphatic nitrilase in terms of activity. This nitrilase also possesses distinct features from the nitrilase bll6402 of the same microbe. 相似文献
16.
Analysis of the Symbiotic Performance of Bradyrhizobium japonicum USDA 110 and Its Derivative I-110 and Discovery of a New Mannitol-Utilizing, Nitrogen-Fixing USDA 110 Derivative 总被引:1,自引:1,他引:1 下载免费PDF全文
James N. Mathis Daniel W. Israel W. Mark Barbour Brion D. W. Jarvis Gerald H. Elkan 《Applied microbiology》1986,52(1):75-80
Previously, Bradyrhizobium japonicum USDA 110 was shown to contain colony morphology variants which differed in nitrogen-fixing ability. Mannitol-utilizing derivatives L1-110 and L2-110 have been shown to be devoid of symbiotic nitrogen fixation ability, and non-mannitol-utilizing derivatives I-110 and S-110 have been shown to be efficient at nitrogen fixation. The objectives of this study were to determine the effect of media carbon sources on the symbiotic N2-fixing ability of strain USDA 110 and to compare the effectiveness of strain USDA 110 and derivative I-110. Based on acetylene reduction activity and the nitrogen content of 41-day-old soybean plants, neither derivative I-110 nor cultures of USDA 110 grown in media favoring non-mannitol-using derivatives had symbiotic nitrogen fixation that was statistically superior to that of cultures of USDA 110 grown in media favoring mannitol-using derivatives. In another experiment 200 individual nodules formed by strain USDA 110 grown in yeast extract gluconate were screened for colony morphology of occupying variant(s) and acetylene reduction activity. Nodules occupied by mannitol-using derivatives (large colony type on 0.1% yeast extract-0.05% K2HPO4-0.08% MgSO4 · 7H2O-0.02% NaCl-0.001% FeCl3 · 6H2O [pH 6.7] with 1% mannitol [YEM] plates) had a mean acetylene reduction activity equal to that of nodules occupied by non-mannitol-using derivatives (small colony type on YEM plates). A total of 20 large colonial derivatives and 10 small colonial derivatives (I-110-like) were isolated and purified by repeated culture in YEM and YEG (same as YEM except 1% gluconate instead of 1% mannitol) media, respectively, followed by dilution in solutions containing 0.05% Tween 40. After 25 days of growth, soybean plants inoculated with the large colony isolates had mean whole-plant acetylene reduction activity, whole-plant dry weight, and whole-plant nitrogen contents equal to or better than those of plants inoculated with either the small colony isolates (I-110-like) or the I-110 (non-mannitol-using) derivative. Hence, the existence of a mannitol-utilizing derivative that fixes nitrogen in a culture of strain USDA 110 obtained from the U.S. Department of Agriculture, Beltsville, Md., was established. This new USDA 110 derivative was designated as MN-110 because it was a mannitol-utilizing nitrogen-fixing USDA 110 derivative. This derivative was morphologically indistinguishable from the non-nitrogen-fixing derivative L2-110 found in cultures obtained earlier from the U.S. Department of Agriculture, Beltsville. DNA-DNA homology and restriction enzyme analyses indicated that MN-110 is genetically related to other USDA 110 derivatives that have been characterized previously. 相似文献
17.
Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. 总被引:9,自引:0,他引:9
M G?ttfert D Holzh?user D B?ni H Hennecke 《Molecular plant-microbe interactions : MPMI》1992,5(3):257-265
Bradyrhizobium japonicum has two closely linked homologs of the nodulation regulatory gene, nodD; these homologs are located upstream of and in divergent orientation to the nodYABCSUIJ gene cluster. We report here the nucleotide sequence and mutational analyses of both nodD copies. The predicted NodD1 and NodD2 proteins shared 62% identical amino acid residues at corresponding positions and exhibited different degrees of homology with NodD proteins of other Bradyrhizobium, Azorhizobium, and Rhizobium strains. Induction of the nodYABCSUIJ operon, as measured by expression of a translational nodC'-'lacZ fusion, required the nodD1 gene, but not nodD2. A B. japonicum mutant deleted for both nodD copies (strain delta 1267) still showed residual nodulation activity; however, nodulation of soybean was significantly delayed, and nodulation of mung bean and siratro resulted in strongly reduced nodule numbers. Fully efficient nodulation of mung bean and siratro by strain delta 1267 was restored by genetic complementation with the nodD1 gene, but not with nodD2. We conclude from these data that nodD1 is the critical gene that contributes to maximal nodulation efficiency, whereas the nodD2 gene does not play any obvious role in nodulation of the host plants tested. 相似文献
18.
19.
Two dissimilar subspecies ofBradyrhizobium japonicum (USDA 110 and 26) differ in ammonia (NH3) assimilation and symbiotic indoleacetic acid (IAA) production. Free-living cultures of type-strain USDA 26 grow on NH3 as a sole N source and take up an NH3 analog, methylamine, whereas USDA strain 110 does neither. Although both strains nodulate soybean effectively, root nodules infected with symbiont 26 contain 0.3–1.1 g IAA per gram fresh weight. Nodules infected by tryptophan catabolic variants 4b and 20d, derived from strain 26, also elicit an increased IAA content, two- to fourfold (2.0–3.9 g · g–1). In contrast, nodules infected with the dissimilar subspecies (strains 110 and 123) contain significantly less IAA. 相似文献
20.
Sabrina Gauer Zhijie Wang Harm Otten Mathieu Etienne Morten Jannik Bjerrum Leila Lo Leggio Alain Walcarius Friedrich Giffhorn Gert-Wieland Kohring 《Applied microbiology and biotechnology》2014,98(7):3023-3032
A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an l-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with d-glucitol oxidation to d-fructose but also converted l-glucitol to d-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for l-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a d-sorbitol dehydrogenase (EC 1.1.1.14). 相似文献