首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The human Rad51 protein (hRad51), like its bacterial homologue RecA, catalyzes genetic recombination between homologous single and double-stranded DNA substrates. Using IAsys biosensor technology, we have examined the critical first step in this process, the binding of hRad51 and RecA to ssDNA. We show that hRad51 binds cooperatively and with high affinity to an oligonucleotide substrate in both the absence and presence of nucleotide cofactors. In fact, both ATP and ATPgammaS have a slight inhibitory effect on hRad51 binding affinity. We show that this results from a decrease in the intrinsic affinity of a given monomer for ssDNA, which is counterbalanced by an increase in the cooperative assembly of protein onto DNA. In contrast, we show that the dramatic NTP-induced increase in ssDNA binding affinity of RecA is accounted for by a significant increase in cooperative filament assembly and not by an increase in the intrinsic DNA binding affinity of monomeric RecA. These results demonstrate that although the hRad51 and RecA proteins display many structural and functional similarities, they show profound inherent mechanistic differences.  相似文献   

2.
RecA protein catalyses an ATP-dependent DNA strand-exchange reaction that is the central step in the repair of dsDNA breaks by homologous recombination. Although much is known about the structure of RecA protein itself, we do not at present have a detailed picture of how RecA binds to ssDNA and dsDNA substrates, and how these interactions are controlled by the binding and hydrolysis of the ATP cofactor. Recent studies from electron microscopy and X-ray crystallography have revealed important ATP-mediated conformational changes that occur within the protein, providing new insights into how RecA catalyses DNA strand-exchange. A unifying theme is emerging for RecA and related ATPase enzymes in which the binding of ATP at a subunit interface results in large conformational changes that are coupled to interactions with the substrates in such a way as to promote the desired reactions.  相似文献   

3.
4.
5.
M C Skiba  K M Logan  K L Knight 《Biochemistry》1999,38(37):11933-11941
Mutational studies of regions that make up the oligomeric interface within the RecA protein filament structure have shown that F217 is an important determinant of RecA function and oligomer stability. All substitutions, other than Tyr and Cys, completely inhibit RecA activities and exhibit a substantial decrease in protein filament stability [Skiba, M. C., and Knight, K. L. (1994) J. Biol. Chem. 269, 3823-3828; Logan, K. M., et al. (1997) J. Mol. Biol. 266, 306-316]. Although the RecA crystal structure exhibits no obvious constraints that explain this mutational stringency, the structure does reveal a hydrophobic pocket in the neighboring monomer that may accommodate the F217 side chain. Together with the F217C mutation, we have introduced a series of Cys substitutions within the interacting surface on the neighboring monomer and have tested for disulfide formation under various conditions, e.g., with or without ATP and ssDNA. We show that the location of F217 in the crystal structure is in general agreement with its position in the catalytically active RecA-ATP-DNA complex. Functional studies with the mutant proteins support the idea that ATP-induced movement of the wild-type F217 side chain toward this hydrophobic pocket is important in mediating allosteric changes in the RecA protein structure.  相似文献   

6.
Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 Å crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 Å) conformation with P61 symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the γ-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA–DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.  相似文献   

7.
The RecA protein of Escherichia coli optimally promotes DNA strand exchange reactions in the presence of the single strand DNA-binding protein of E. coli (SSB protein). Under these conditions, assembly of RecA protein onto single-stranded DNA (ssDNA) occurs in three steps. First, the ssDNA is rapidly covered by SSB protein. The binding of RecA protein is then initiated by nucleation of a short tract of RecA protein onto the ssDNA. Finally, cooperative polymerization of additional RecA protein accompanied by displacement of SSB protein results in a ssDNA-RecA protein filament (Griffith, J. D., Harris, L. D., and Register, J. C. (1984) Cold Spring Harbor Symp. Quant. Biol. 49, 553-559). We report here that RecA protein assembly onto circular ssDNA yields RecA protein-covered circles in which greater than 85% are completely covered by RecA protein with no remaining SSB protein-covered segments (as detected by electron microscopy). However, when linear ssDNA is used, 90% of the filaments contain a short segment at one end complexed with SSB protein. This suggests that RecA protein assembly is unidirectional. Visualization of the assembly of RecA protein onto either long ssDNA tails (containing either 5' or 3' termini) or ssDNA gaps generated in double strand DNA allowed us to determine that the RecA protein polymerizes in the 5' to 3' direction on ssDNA and preferentially nucleates at ssDNA-double strand DNA junctions containing 5' termini.  相似文献   

8.
Reddy MS  Vaze MB  Madhusudan K  Muniyappa K 《Biochemistry》2000,39(46):14250-14262
Single-stranded DNA-binding proteins play an important role in homologous pairing and strand exchange promoted by the class of RecA-like proteins. It is presumed that SSB facilitates binding of RecA on to ssDNA by melting secondary structure, but direct physical evidence for the disruption of secondary structure by either SSB or RecA is still lacking. Using a series of oligonucleotides with increasing amounts of secondary structure, we show that stem loop structures impede contiguous binding of RecA and affect the rate of ATP hydrolysis. The electrophoretic mobility shift of a ternary complex of SSB-DNA-RecA and a binary complex of SSB-DNA are similar; however, the mechanism remains obscure. Binding of RecA on to stem loop is rapid in the presence of SSB or ATPgammaS and renders the complex resistant to cleavage by HaeIII, to higher amounts of competitor DNA or low temperature. The elongation of RecA filament in a 5' to 3' direction is halted at the proximal end of the stem. Consequently, RecA nucleates at the loop and cooperative binding propagates the RecA filament down the stem causing its disruption. The pattern of modification of thymine residues in the loop region indicates that RecA monomer is the minimum binding unit. Together, these results suggest that SSB plays a novel role in ensuring the directionality of RecA polymerization across stem loop in ssDNA. These observations have fundamental implications on the role of SSB in multiple aspects of cellular DNA metabolism.  相似文献   

9.
Lee AM  Singleton SF 《Biochemistry》2006,45(14):4514-4529
The Escherichia coli RecA protein is the prototypical member of a family of molecular motors that transduces ATP binding and hydrolysis for mechanical function. While many general mechanistic features of RecA action are known, specific structural and functional insights into the molecular basis of RecA activation remain elusive. Toward a more complete understanding of the interdependence between ATP and DNA binding by RecA, we report the characterization of a mutant RecA protein wherein the aspartate residue at position 100 within the ATP binding site is replaced by arginine. Physiologically, D100R RecA was characterized by an inducible, albeit reduced, activation of the SOS response and a diminished ability to promote cellular survival after UV irradiation. Biochemically, the D100R substitution caused a surprisingly modest perturbation of RecA-ATP interactions and an unexpected and significant decrease in the affinity of RecA for ssDNA. Moreover, in vitro assays of RecA activities requiring the coordinated processing of ATP and DNA revealed (1) a 2-5-fold decrease in steady-state turnover of ATP; (2) no formation of mixed nucleoprotein filaments when wild-type and D100R RecA compete for limiting ssDNA; and (3) no formation of strand exchange reaction products. Taken together, these results suggest that the D100R mutational effects on isolated RecA activities combine synergistically to perturb its higher-order functions. We conclude that the replacement of Asp100 resulted in a change in the electrostatic complementarity between RecA monomers during active filament assembly that prevents the protein from fully accessing the active multimeric state.  相似文献   

10.
We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional RecA protein to yield presynaptic filaments. Here, electron microscopy has been used to further explore the parameters of this assembly process. The optimal extent of presynaptic filament formation required at least one RecA protein monomer per three nucleotides, high concentrations of ATP (greater than 3 mM in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein assembly.  相似文献   

11.
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed.  相似文献   

12.
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.  相似文献   

13.
RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe the structure and kinetics of RecA interaction with its biologically most relevant substrate, long ssDNA molecules. We find that RecA ATPase activity is required for the formation of long continuous filaments on ssDNA. These filaments both nucleate and extend with a multimeric unit as indicated by the Hill coefficient of 5.4 for filament nucleation. Disassembly rates of RecA from ssDNA decrease with applied stretching force, corresponding to a mechanism where protein-induced stretching of the ssDNA aids in the disassembly. Finally, we show that RecA–ssDNA filaments can reversibly interconvert between an extended, ATP-bound, and a compressed, ADP-bound state. Taken together, our results demonstrate that ATP hydrolysis has a major influence on the structure and state of RecA filaments on ssDNA.  相似文献   

14.
Genetic analysis of RecA protein chimeras and their ancestors, RecAEc (from Escherichia coli) and RecAPa (Pseudomonas aeruginosa) had allowed us to place these proteins with respect to their recombinogenic activities in the following order: RecAPa>RecAX21>RecAX20=RecAEc. While RecAX20 differs from RecAEc in five amino acid residues with two substitutions ([S25A] and [I26V]) at the interface of subunit interactions in the RecA polymer, RecAX20 and RecAX21 differ only by a single substitution [L29M] present at the interface. Here, we present an analysis of the biochemical properties considered important for the recombinogenic activity of all four RecA proteins. While RecAX20 was very similar to RecAEc by all activities analysed, RecAX21 differed from RecAEc in several respects. These differences included an increased affinity for double-stranded DNA, a more active displacement of SSB protein from single-stranded DNA (ssDNA), a decreased end-dependent RecAX21 protein dissociation from a presynaptic complex, and a greater accumulation of intermediate products relative to the final product in the strand-exchange reaction. RecAPa was more tolerant than RecAX21 only to the end-dependent RecA protein dissociation. In addition, RecAPa was more resistant to temperature and salt concentrations in its ability to form a presynaptic RecAPa::ATP::ssDNA filament. Calculations of conformational energy revealed that the [L29M] substitution in RecAX21 polymer caused an increase in its flexibility. This led us to conclude that even a small change in the flexibility of the RecA presynaptic complex could profoundly affect its recombinogenic properties.  相似文献   

15.
In the bacteriophage T4 homologous recombination system, presynaptic filament assembly on single-stranded (ssDNA) DNA requires UvsX recombinase, UvsY mediator, and Gp32 ssDNA-binding proteins. Gp32 exerts both positive and negative effects on filament assembly: positive by denaturing ssDNA secondary structure, and negative by competing with UvsX for ssDNA binding sites. UvsY is believed to help UvsX displace Gp32 from the ssDNA. To test this model we developed a real-time fluorescence assay for Gp32-ssDNA interactions during presynapsis, based on changes in the fluorescence of a 6-iodoacetamidofluorescein-Gp32 conjugate. Results demonstrate that the formation of UvsX presynaptic filaments progressively disrupts Gp32-ssDNA interactions. Under stringent salt conditions the disruption of Gp32-ssDNA by UvsX is both ATP- and UvsY-dependent. The displacement of Gp32 from ssDNA during presynapsis requires ATP binding, but not ATP hydrolysis, by UvsX protein. Likewise, UvsY-mediated presynapsis strongly requires UvsY-ssDNA interactions, and is optimal at a 1:1 stoichiometry of UvsY to UvsX and/or ssDNA binding sites. Presynaptic filaments formed in the presence of UvsY undergo assembly/collapse that is tightly coupled to the ATP hydrolytic cycle and to stringent competition for ssDNA binding sites between Gp32 and various nucleotide-liganded forms of UvsX. The data directly support the Gp32 displacement model of UvsY-mediated presynaptic filament assembly, and demonstrate that the transient induction of high affinity UvsX-ssDNA interactions by ATP are essential, although not sufficient, for Gp32 displacement. The underlying dynamics of protein-ssDNA interactions within presynaptic filaments suggests that rearrangements of UvsX, UvsY, and Gp32 proteins on ssDNA may be coupled to central processes in T4 recombination metabolism.  相似文献   

16.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

17.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

18.
Dynamic light scattering (DLS) measurements were performed on self-assembled solutions of RecA as a function of assembly time under strand exchange ionic strength conditions (10 mM MgCl2, 65 mM NaCl, 10 mM Tris-HCl, pH = 7.5, 1 mM DTT, 3-4 microM RecA) in the absence of ATP. These measurements yield distributions of the translational diffusion coefficients of the changing populations of assembling protein species. Interpretations of results of DLS measurements are made in terms of model hydrodynamic calculations that indicate, under the solution conditions employed, the smallest fundamental quaternary subunit of RecA is a hexamer in a toroidal or lock-washer configuration. Interactions of M13mp19 circular single strand DNA (ssDNA) with RecA assembled to different stages were also investigated. Additions of ssDNA to self-assembled solutions of RecA acts to dissociate the associated structures into hexamer subunits. However, the effect of ssDNA on assembled RecA is highly dependent on the RecA self-assembly state. The longer the assembly time, the less reversible the self-assembled structures of RecA become. Binding isotherms of titrated mixtures of ssDNA with RecA self-assembled to various stages were also determined. Evaluated dissociation constants of RecA/ssDNA complexes were found to increase with increases of the associated state of RecA. These results strongly suggest that, under the solvent conditions employed, the active ssDNA binding form of RecA is a hexamer.  相似文献   

19.
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli . ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo . The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA–GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA+, depending on the ratio of the two proteins. RecA4159 was unable to enter RecA+ filaments on DNA or storage structures and was recessive to RecA+. It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.  相似文献   

20.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号