首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.  相似文献   

2.
Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations   总被引:1,自引:0,他引:1  
Xia HJ  Yang G 《Cell research》2005,15(2):83-91
  相似文献   

3.
To study the effect of hypercholesterolemia on vascular smooth muscle cell (VSMC) function, atherosclerosis-prone but plaque-free endothelium-denuded aortic rings (width 2mm) from C57Bl6 Wild Type (WT) and apolipoprotein E-deficient (apoE(-/-)) mice (age 4 months) were mounted in a myograph and loaded with Fura-2 AM to simultaneously measure free Ca(2+) ([Ca(2+)](i)) and force development. In comparison with WT, apoE(-/-) mice displayed higher basal [Ca(2+)](i). Moreover, the time constant of the second phase of the biphasic high K(+)-induced [Ca(2+)](i) response was significantly increased in apoE(-/-) compared to WT mice. This phase was abolished by treatment with cyclopiazonic acid (CPA), depleting sarcoplasmic reticulum (SR). Further investigation of SR dependent [Ca(2+)](i) handling with CPA and caffeine revealed no alteration of maximal SERCA or ryanodine receptor function. Inositol (1,4,5)-triphosphate receptor (IP(3)R)-mediated [Ca(2+)](i) release was, however, significantly increased in apoE(-/-) mice compared to WT mice as established with phenylephrine and ATP. In Ca(2+)-free conditions the ATP-induced [Ca(2+)](i) was not altered. The ATP-induced store-operated Ca(2+) entry was, however, significantly increased in apoE(-/-) compared to WT mice. The results demonstrate that basal [Ca(2+)](i) levels and IP(3)R-mediated store-operated [Ca(2+)](i) release over the plasma membrane were elevated in hypercholesterolemic but plaque-free apoE(-/-) mice.  相似文献   

4.
Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.  相似文献   

5.
IP(3) receptors: the search for structure   总被引:4,自引:0,他引:4  
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.  相似文献   

6.
Huh YH  Yoo SH 《FEBS letters》2003,555(2):411-418
Although the inositol 1,4,5-triphosphate (IP(3))-induced nuclear Ca(2+) release has been shown to play key roles in nuclear functions, the presence of IP(3) receptor (IP(3)R)/Ca(2+) channels in the nucleoplasm has not been found. Recently, the IP(3)R/Ca(2+) channels were reported to exist in the nucleoplasmic reticulum structure, an extension of the nuclear envelope. Here we investigated the potential existence of the IP(3)Rs in the nucleoplasm and found the presence of all three IP(3)R isoforms in neuroendocrine and non-neuroendocrine cells. The IP(3)Rs were widely scattered in the nucleoplasm, localizing in both the heterochromatin and euchromatin regions.  相似文献   

7.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) within the endoplasmic reticulum mediate release of Ca(2+) from intracellular stores. Different channels usually mediate Ca(2+) entry across the plasma membrane. In B lymphocytes and a cell line derived from them (DT40 cells), very few functional IP(3)R (approximately 2/cell) are invariably expressed in the plasma membrane, where they mediate about half the Ca(2+) entry evoked by activation of the B-cell receptor. We show that cells reliably count approximately 2 functional IP(3)R into the plasma membrane even when their conductance and ability to bind IP(3) are massively attenuated. We conclude that very small numbers of functional IP(3)R can be reliably counted into a specific membrane compartment in the absence of feedback signals from the active protein.  相似文献   

8.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.  相似文献   

10.
Inositol (1,4,5)-trisphosphate receptors (IP(3)Rs) release intracellular Ca(2+) as localized Ca(2+) signals (Ca(2+) puffs) that represent the activity of small numbers of clustered IP(3)Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca(2+) release channels supporting Ca(2+) puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP(3)R transitions between heterogeneous cellular architectures and the differential behavior of IP(3)Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP(3)Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca(2+) puffs are supported by a broad range of clustered IP(3)R microarchitectures; 2), cluster ultrastructure shapes Ca(2+) puff characteristics; and 3), loosely corralled IP(3)R clusters (>200 nm interchannel separation) fail to coordinate Ca(2+) puffs, owing to inefficient triggering and impaired coupling due to reduced Ca(2+)-induced Ca(2+) release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca(2+) puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca(2+) dynamics.  相似文献   

11.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.  相似文献   

12.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that can trigger a Ca(2+) wave prolongated between cells. This intercellular signaling was found defective in some gap junction connexin deafness mutants. In this study, the mechanism underlying IP(3) intercellular signaling in the cochlea was investigated. A gap junction channel is composed of two hemichannels. By using a fluorescence polarization technique to measure IP(3) concentration, the authors found that IP(3) could be released by gap junction hemichannels in the cochlea. The IP(3) release was increased about three- to fivefold by the reduction of extracellular Ca(2+) concentration or by mechanical stress. This incremental release could be blocked by gap junction blockers but not eliminated by a purinergic P2x receptor antagonist and verapamil, which is a selective P-glycoprotein inhibitor inhibiting the ATP-binding cassette transporters. The authors also found that IP(3) receptors were extensively expressed in the cochlear sensory epithelium, including on the cell surface. Extracellular application of IP(3) could trigger cellular Ca(2+) elevation. This Ca(2+) elevation was eliminated by the gap junction hemichannel blocker. These data reveal that IP(3) can pass through hemichannels acting as an extracellular mediator to participate in intercellular signaling. This hemichannel-mediated extracellular pathway may play an important role in long-distance intercellular communication in the cochlea, given that IP(3) only has a short lifetime in the cytoplasm.  相似文献   

13.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

14.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) release channels whose opening requires binding of two intracellular messengers IP(3) and Ca(2+). The regulation of IP(3)R function has also been shown to involve a variety of cellular proteins. Recent biochemical and structural analyses have deepened our understanding of how the IP(3)-operated Ca(2+) channel functions. Specifically, the atomic resolution structure of the IP(3)-binding region has provided a sound structural basis for the receptor interaction with the natural ligand. Electron microscopic studies have also shed light on the overall shape of the tetrameric receptor. This review aims to provide comprehensive overview of the current information available on the structure and function relationship of IP(3)R.  相似文献   

15.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.  相似文献   

16.
Annexin 7 mobilizes calcium from endoplasmic reticulum stores in brain   总被引:1,自引:0,他引:1  
Mobilization of intracellular calcium from inositol-1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum (ER) stores plays a prominent role in brain function. Mice heterozygous for the annexin A7 (Anx7) gene have a profound reduction in IP3 receptor function in pancreatic islets along with defective insulin secretion. We examined IP3-sensitive calcium pools in the brains of Anx7 (+/-) mice by utilizing ATP/Mg(2+)-dependent (45)Ca(2+) uptake into brain membrane preparations and tissue sections. Although the Anx7 (+/-) mouse brain displayed similar levels of IP3 binding sites and thapsigargin-sensitive (45)Ca(2+) uptake as that seen in wild-type mouse brain, the Anx7 (+/-) mouse brain Ca(2+) pools showed markedly reduced sensitivity to IP3. A potent and saturable Ca(2+)-releasing effect of recombinant ANX7 protein was demonstrated in mouse and rat brain membrane preparations, which was additive with that of IP3. We propose that ANX7 mobilizes Ca(2+) from an endoplasmic reticulum-like pool, which can be recruited to enhance IP3-mediated Ca(2+) release.  相似文献   

17.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are ubiquitous intracellular Ca(2+) release channels whose functional characterization by transfection has proved difficult due to the background contribution of endogenous channels. In order to develop a functional assay to measure recombinant channels, we transiently transfected the rat type I IP(3)R into COS-7 cells. Saponin-permeabilized COS cells transfected with type I IP(3)R showed a 50% increase in inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release at saturating [IP(3)] (10 micrometer) but no enhancement at subsaturating [IP(3)] (300 nm). However, cotransfection of the IP(3)R and human sarco/endoplasmic reticulum ATPase (SERCA)-2b ATPase cDNA resulted in 60 and 110% increases in Ca(2+) release at subsaturating and saturating doses of IP(3), respectively. IP(3) or adenophostin A failed to release (45)Ca(2+) from microsomal vesicles prepared from cells expressing either type I IP(3)R or SERCA cDNAs alone. However, microsomal vesicles prepared from cells doubly transfected with IP(3)R and SERCA cDNAs released 33.0 +/- 0.04% of the A23187-sensitive pool within 30 s of 1 micrometer adenophostin A addition. Similarly, the initial rate of (45)Ca(2+) influx into oxalate-loaded microsomal vesicles was inhibited by IP(3) only when the microsomes were prepared from COS cells doubly transfected with SERCA-2b and IP(3)R DNA. The absence of a functional contribution from endogenous IP(3)Rs has enabled the use of this assay to measure the Ca(2+) sensitivities of IP(3)-mediated (45)Ca(2+) fluxes through recombinant neuronal type I (SII(+)), peripheral type I (SII(-)), and type III IP(3)Rs. All three channels displayed a biphasic dependence upon [Ca(2+)](cyt). Introduction of mutations D2550A and D2550N in the putative pore-forming region of the type I IP(3)R inhibited IP(3)-mediated (45)Ca(2+) fluxes, whereas the conservative substitution D2550E was without effect. This assay therefore provides a useful tool for studying the regulatory properties of individual IP(3)R isoforms as well as for screening pore mutations prior to more detailed electrophysiological analyses.  相似文献   

19.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-dependent Ca(2+) signaling exerts positive inotropic, but also arrhythmogenic, effects on excitation-contraction coupling (ECC) in the atrial myocardium. The role of IP(3)R-dependent sarcoplasmic reticulum (SR) Ca(2+) release in ECC in the ventricular myocardium remains controversial. Here we investigated the role of this signaling pathway during ECC in isolated rabbit ventricular myocytes. Immunoblotting of proteins from ventricular myocytes showed expression of both type 2 and type 3 IP(3)R at levels approximately 3.5-fold less than in atrial myocytes. In permeabilized myocytes, direct application of IP(3) (10 microM) produced a transient 21% increase in the frequency of Ca(2+) sparks (P < 0.05). This increase was accompanied by a 13% decrease in spark amplitude (P < 0.05) and a 7% decrease in SR Ca(2+) load (P < 0.05) and was inhibited by IP(3)R antagonists 2-aminoethoxydiphenylborate (2-APB; 20 microM) and heparin (0.5 mg/ml). In intact myocytes endothelin-1 (100 nM) was used to stimulate IP(3) production and caused a 38% (P < 0.05) increase in the amplitude of action potential-induced (0.5 Hz, field stimulation) Ca(2+) transients. This effect was abolished by the IP(3)R antagonist 2-APB (2 microM) or by using adenoviral expression of an IP(3) affinity trap that buffers cellular IP(3). Together, these data suggest that in rabbit ventricular myocytes IP(3)R-dependent Ca(2+) release has positive inotropic effects on ECC by facilitating Ca(2+) release through ryanodine receptor clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号