首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By immunogold electron microscopy we have shown that in mouse cerebellar Purkinje cells fixed by perfusion with formaldehyde-glutaraldehyde solution, the InsP3 receptor are numerously detected on the stacks of flattened cisterns (OTSU et al, (1990) Cell Struct. Funct., 15: 163-173). In the present experiment we investigated distribution, structure and properties of the stacks by conventional electronmicroscopy, lectin cytochemistry and immunoelectron microscopy. The size and number of stacks were variable depending on their intracellular localization; short stacks with 2-4 parallel cisterns predominate in the perikaryon, long stacks with 4-15 cisterns in the proximal dendrite, and long stacks with 3-4 cisterns in the distal dendrites. The flattened cisterns bind with concanavalin A but not with wheat-germ agglutinin and may contain KDEL proteins loaded with Lys-Asp-Glu-Leu at their C-terminin in their lumens, indicating that the cisterns are derived from ER membranes. The electron dense materials sandwiched between the cisternal membranes are composed of small particles, short cylindrical in shape and approximately 20 nm in diameter, and markedly labeled with anti InsP3R antibody. We suggest that they correspond to the tetramer of the InsP3R or their related molecules. It is not clear whether the stacks of flattened cisterns exist per se in the Purkinje cells or smooth ER existing in singlet in vivo in the Purkinje cells forms stacks during fixation. It is strongly suggested, however, that the smooth ER membranes covered by the InsP3R or their related molecules can easily interact and stack each other in the Purkinje cells.  相似文献   

2.
Distribution of protein disulfide isomerase in rat hepatocytes   总被引:2,自引:0,他引:2  
We investigated quantitatively the distribution of protein disulfide isomerase (PDI) in rat hepatocytes by immunocytochemistry using a post-embedding protein A-gold technique. In hepatocytes, gold particles were mainly localized in the intracisternal space of the rough and smooth endoplasmic reticulum (ER) and nuclear envelopes. Autolysosomes engulfing ER were occasionally densely labeled, especially in rat hepatocytes previously treated with leupeptin in vivo, suggesting that the autophagosome-autolysosome system may be an important route for degradation of PDI. A few gold particles were also found on the plasma membranes. Localization of gold particles on the other subcellular organelles, such as Golgi apparatus, peroxisomes, and nuclear matrix, was sparse and at the control level. The predominant localization of PDI on the intracisternal surface of the ER and nuclear envelope supports a potential role of PDI in the formation of disulfide bonds of nascent polypeptides, thus accelerating formation of the higher-order structure of secretory and membrane proteins and rendering the translocation process irreversible.  相似文献   

3.
Direct ferritin immunoelectron microscopy was used to visualize the asialoglycoprotein receptor in various rat liver subcellular fractions. The cytoplasmic surfaces of cytoplasmic organelles such as the rough and smooth microsomes, Golgi cisternae and lysosomes showed hardly any ferritin label exception for the slight labeling of secretory granules found mainly in the light Golgi fraction (GF1). Occasionally, however, open membrane sheet structures, smooth vesicular or tubular structures heavily labeled with ferritin, were present in all these subcellular fractions. These structures probably correspond to fragmented sinusoidal or lateral hepatocyte plasma membranes recovered to these subcellular fractions. When the limiting membranes of the secretion granules were partially broken by mechanical force, a number of ferritin particles frequently were seen attached in large clusters to the luminal surface of the membrane, the cytoplasmic surface of the corresponding domain being slightly labeled. These observations are strong evidence that the receptor protein is never translocated vertically throughout the intracellular transport from ER to plasma membrane via Golgi apparatus and from plasma membrane back to trans-Golgi elements and also in lysosomes, always exposing the major antigenic sites to the luminal or extracellular surface and the minor counterparts to the cytoplasmic surface of the membranes. The receptor protein also is suggested to be concentrated in clusters on the luminal surface of secretion granules when they form on the trans-side of the Golgi apparatus.  相似文献   

4.
A system for study and measurement of the attachment in vitro of exogenous polyribosomes to membranes has been presented. Its main features are use of low temperature, post-microsomal supernatant, pyrophosphate and citric acid to remove ribosomes from the surface of rough endoplasmic reticulum, and a method for quantitative separation of unattached from membrane-associated polyribosomes. The following were found. (1) Rough endoplasmic reticulum, from which ribosomes had been removed by treatment with pyrophosphate and citrate, bound over 50% of added polyribosomes, whereas the untreated (or control) rough and smooth endoplasmic reticulum and the smooth endoplasmic reticulum treated with pyrophosphate-citrate did not bind polyribosomes. (2) The polyribosome-binding capacity of rough endoplasmic reticulum stripped of its ribosomes decayed upon storage of the membranes at 0-4 degrees C. The half-life of this decay was about 6 days whereas that of the polyribosome-binding capacity of hepatoma stripped rough endoplasmic reticulum was about 1.5 days. (3) Preparations of stripped rough endoplasmic reticulum after reassociation with polyribosomes in vitro were quite similar to preparations of native rough endoplasmic reticulum as viewed with the electron microscope. Evidence is presented to support the contention that association of polyribosomes with membranes was the result of polyribosomal reattachment to the membranes rather than trapping of the polyribosomes between vesicles of the membranes.  相似文献   

5.
Two intracellular calcium-release channel proteins, the inositol trisphosphate (InsP3), and ryanodine receptors, have been identified in mammalian and avian cerebellar Purkinje neurons. In the present study, biochemical and immunological techniques were used to demonstrate that these proteins coexist in the same avian Purkinje neurons, where they have different intracellular distributions. Western analyses demonstrate that antibodies produced against the InsP3 and the ryanodine receptors do not cross-react. Based on their relative rates of sedimentation in continuous sucrose gradients and SDS-PAGE, the avian cerebellar InsP3 receptor has apparent native and subunit molecular weights of approximately 1,000 and 260 kD, while those of the ryanodine receptors are approximately 2,000 and 500 kD. Specific [3H]InsP3- and [3H]ryanodine-binding activities were localized in the sucrose gradient fractions enriched in the 260-kD and the approximately 500-kD polypeptides, respectively. Under equilibrium conditions, cerebellar microsomes bound [3H]InsP3 with a Kd of 16.8 nM and Bmax of 3.8 pmol/mg protein; whereas, [3H]ryanodine was bound with a Kd of 1.5 nM and a capacity of 0.08 pmol/mg protein. Immunolocalization techniques, applied at both the light and electron microscopic levels, revealed that the InsP3 and ryanodine receptors have overlapping, yet distinctive intracellular distributions in avian Purkinje neurons. Most notably the InsP3 receptor is localized in endomembranes of the dendritic tree, in both the shafts and spines. In contrast, the ryanodine receptor is observed in dendritic shafts, but not in the spines. Both receptors appear to be more abundant at main branch points of the dendritic arbor. In Purkinje neuron cell bodies, both the InsP3 and ryanodine receptors are present in smooth and rough ER, subsurface membrane cisternae and to a lesser extent in the nuclear envelope. In some cases the receptors coexist in the same membranes. Neither protein is observed at the plasma membrane, Golgi complex or mitochondrial membranes. Both the InsP3 and ryanodine receptors are associated with intracellular membrane systems in axonal processes, although they are less abundant there than in dendrites. These data demonstrate that InsP3 and ryanodine receptors exist as unique proteins in the same Purkinje neuron. These calcium-release channels appear to coexist in ER membranes in most regions of the Purkinje neurons, but importantly they are differentially distributed in dendritic processes, with the dendritic spines containing only InsP3 receptors.  相似文献   

6.
Docking protein (or SRP receptor) is an integral membrane protein essential for translocation of nascent polypeptides across the membrane of the endoplasmic reticulum (ER). Anti-docking protein antibodies were used to localize this protein in situ in thin frozen sections using protein A-gold detection methods. The majority of gold particles was restricted to ribosome-studded membranes, whereas particles were rarely seen in areas rich in smooth ER. Quantitative evaluation of labeling suggests that there is one molecule of docking protein for roughly 10 to 20 bound ribosomes. On the basis of these results we conclude that docking protein is the first functionally-characterized integral marker protein specific for the rough membranes of ER.  相似文献   

7.
《The Journal of cell biology》1984,98(6):2239-2244
Four mouse monoclonal antibodies (mabs) were shown by immunoblotting procedures to recognize the major, basic, membrane-bound Mr 43,000 protein (43K protein) of acetylcholine receptor-rich postsynaptic membranes from Torpedo nobiliana . These mabs and a mab against an extracellular determinant on the acetylcholine receptor were used to localize the two proteins in electroplax (Torpedo californica) and on unsealed postsynaptic membrane fragments at the ultrastructural level. Bound mabs were revealed with a rabbit anti-mouse Ig serum and protein A-colloidal gold. The anti-43K mabs bound only to the cytoplasmic surface of the postsynaptic membrane. The distributions of the receptor and the 43K protein along the membrane were found to be coextensive. Distances between the membrane center and gold particles were very similar for anti-receptor and anti-43K mabs (29 +/- 7 nm and 26 to 29 +/- 7 to 10 nm, respectively). These results show that the 43K protein is a receptor-specific protein having a restricted spatial relationship to the membrane. They thus support models in which the 43K protein is associated with the cytoplasmic domains of the receptor molecule.  相似文献   

8.
The in vivo structure of the smooth endoplasmic reticulum (ER) was visualized in rat and mouse cerebellar Purkinje cells by using quick-freezing techniques followed by freeze-substitution for ultrathin-sectioning or freeze-fracturing and deep-etching for replicas. High magnification electron microscopy of the ultrathin sections revealed a surprising finding that all the smooth ER are apparently rough surfaced, and heavily studded with a large number of small dense projections. In the soma the smooth ER appears to be similar to its rough counterpart, except that the projections are slightly smaller, less electron dense and less protrusive on the ER membranes than the ribosomes. The projections were short rectangles, 20 x 20 x 6 nm3 in size, covering the cytoplasmic surface of the smooth ER in a checker-board manner where closely packed. After freeze-etching and replication, they appeared to be composed of four subparticles, surrounding a central channel. Thus the projections are very similar to the foot structure (ryanodine receptor) of the sarcoplasmic reticulum. Furthermore, they were distributed exclusively in the ER compartment and were highly concentrated especially in the smooth ER. This localization of the projections coindides with the intracellular distribution of the inositol 1,4,5-trisphosphate (IP3) receptor determined by quantitative immunogold electron microscopy. These findings would suggest that the projections are tetramers of IP3 receptor molecules and could be used as a morphological marker for the smooth ER in Purkinje cells, which spreads from the soma to the axon and dendrite, up to the tips including the spines. In Purkinje cells tubular smooth ER runs freely in a serpentine fashion or are intertwined to make large membraneous tangles without forming cisternal stacks. It is highly probable that the ER cisternal stacks do not exist naturally in Purkinje cells but are formed artificially during the various procedures for chemical fixation.  相似文献   

9.
Summary The coelomic space in the trunk of the arrow worm Sagitta elegans is lined by a thin epithelium, which may be termed coelomic epithelium. The visceral part of this epithelium is composed of flat cells characterized by thin and thick myofilaments, which constitute the circular musculature of the gut. In addition mitochondria, rough ER, and smooth walled cisterns, as well as vesicular and granular inclusions occur; the apical and basal plasma membranes exhibit no particular specializations. The parietal epithelium is exceedingly thin and covers the muscle cells of the body wall. In the lateral fields columnar ciliated cells are to be found which are rich in rough ER cisterns and which apparently are also coelomic epithelial cells.  相似文献   

10.
1. Pancreatic ribonuclease in dilute EDTA has been shown to condition rough-microsomal membranes from adult rat liver to accept exogenously added rat liver polyribosomes in vitro at 0-4 degrees C. Treated smooth membranes would not significantly interact with polyribosomes. 2. The conditioning process decreased the membrane RNA content and removed polyribosomes from vesicle surfaces as viewed electron-microscopically. 3. Binding to these conditioned membranes was shown to be uninfluenced by changes of temperature (0-37 degrees C) and pH (6.9-7.8) or the presence of cell sap, but was inhibited by increasing the concentration of potassium chloride. 4. Possession of a polyribosome-binding capacity by conditioned rough membranes was not dependent on adventitious materials that could be dislodged by high ionic strengths. 5. Trypsin treatment under mild conditions destroyed the binding capacity of ribonuclease-conditioned rough membranes. 6. A 2-10S residual RNA was recovered from ribonuclease-conditioned membranes, but its partial removal had no effect on the capacity of membranes to accept polyribosomes. However, some role for this residual RNA in attaching polyribosomes could not be discounted. 7. Evidence is considered that polyribosome-binding sites are intrinsic features of conditioned membranes isolated from rough-microsomal fractions, and that long-range ionic bonding is a primary factor in polyribosome interaction with these binding sites.  相似文献   

11.
Distribution of protein disulfide isomerase in rat epiphyseal chondrocytes   总被引:1,自引:0,他引:1  
We investigated the intracellular distribution of protein disulfide isomerase (PDI) in rat epiphyseal chondrocytes by immunocytochemistry, using a post-embedding protein A-gold technique. Gold particles were localized primarily in the cisternal space of the rough endoplasmic reticulum (ER) and nuclear envelopes. The ER cisternae of the chondrocytes in all the differentiating epiphyseal zones--resting, proliferative, pre-hypertrophic, and hypertrophic--were equally and highly labeled. The labeling density of the cisternal space of the dilated ER, probably reflecting marked accumulation of secretory proteins such as procollagen, was always higher than that of the non-dilated ER. In the dilated cisternal space, gold particles were freely and evenly distributed, without preferential binding to the luminal surface of the ER membranes. We suggest that PDI catalyzes the formation of disulfide bonds of various secretory proteins, perhaps type II procollagen, in the cisternal space of the ER in epiphyseal chondrocytes. The exclusive localization of gold particles in the cisternal space of the ER and nuclear envelopes and the lack of gold particles in the Golgi apparatus, including cis-Golgi cisternae, indicate that PDI is an ER-soluble protein in the chondrocytes and is presumably sorted out in some pre-Golgi compartment and not transported to the Golgi apparatus.  相似文献   

12.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

13.
The electron microscopic study of thin sections of rat liver and heart using commercial specific antibodies against KIR.6.2 and secondary antibodies conjugated with colloidal gold was performed. It was found that the gold-labeled protein is localized in mitochondria of cardiomyocytes and hepatocytes but not in rough and smooth endoplasmic reticulum of hepatic cells and myofibrils of myocardium. In rat heart and liver mitochondria, the gold label was mainly located in mitochondrial cristae and was not found in mitochondrial matrix and intermembrane space. The data indicate that in heart and liver mitochondria there exists a protein similar in structure to the channel-forming subunit of a cytoplasmic potassium channel, KIR6.2. This is also supported by the presence of common modulators of cytoplasmic and mitochondrial ATP-dependent potassium channels. A possible role of the protein as a subunit of the mitochondrial ATP-dependent potassium channel is discussed.  相似文献   

14.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

15.
Lipoprotein particles (d less than 1.03 g/ml) were isolated from rough and smooth microsomes and from the Golgi apparatus of rat liver, and were characterized chemically and morphologically. The rough endoplasmic reticulum (ER) particles were rich in protein (50%) and contained phospholipids (PLP) and triglycerides (TG) in smaller amounts, whereas the lipoprotein particles emanating from the smooth ER, and especially the Golgi apparatus, were rich in TG and PLP, resembling very low density lipoproteins (VLDL) of serum. The difference in chemical composition among the particles was associated with change in size both in situ and in isolated lipoprotein fractions. The rough ER particles were 200-800 A in diameter (mean similar to 420 A); the smooth er particles 200-900 A (mean similar to 520 A); the Golgi particles 350-950 A (mean similar to 580A); and serum VLDL 300- 800 A (mean similar to 450 A). Generally, lipoprotein particles were rare in the rough ER, frequent but diffusely dispersed in smooth ER, and occurring mainly in clusters in "secretory vesicles" of the Golgi complex. They were seldom observed in the cisternal compartments of the Golgi complex. At short intervals (less than 15 min), intravenously injected radioactive glycerol was preferentially channelled into TG, whereas at later time points the majority of the isotope was recovered in the PLP. Three TG pools were distinguished: (a) a cytoplasmic pool with a slow turnover rate; (b) a membrane-associated TG pool; and (c) a pool corresponding to the TG moiety of lipoprotein particles, which showed the highest initial rate of labeling and fastest turnover. When, after pulse labeling, the appearance of incorporation of radioactive glycerol into TG or PLP of isolated lipoproteins was followed from one subcellular fraction to the other, a sequence of labeling was noted. During the first interval, TG from both rough and smooth microsomal lipoproteins displayed a high rate of labeling with peak value at 6 min, followed by a quick fall-off, while the Golgi lipoproteins reached maximal level at 10-20 min after administration. There was an interval of 10-15 min before the appearance of labeled VLDL in serum. It is concluded that the assembly of the apoproteins and lipid moieties into lipoprotein particles-presumed to be precursors of liver VLDL-begins in the rough ER and continues in the smooth ER. Also, there is a parallel change in chemical composition and size of the lipoprotein particles as they make their way through the ER and the Golgi apparatus. Some remodeling of the particles may take place in the Golgi apparatus before discharge into the circulation.  相似文献   

16.
It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the binding of D-myo-inositol 1,4,5-trisphosphate (InsP(3)) to a receptor located on the endoplasmic reticulum (ER) triggers an efflux of calcium release from the ER. Sites that bind InsP(3) with high affinity and specificity have also been described in plant cells, but their precise intracellular locations have not been conclusively identified. In contrast to animal cells, it has been suggested that in plants the vacuole is the major intracellular store of calcium involved in signal induced calcium release. The aim of this work was to determine the intracellular localization of InsP(3)-binding sites obtained from 3-week-old Chenopodium rubrum leaves. Microsomal membranes were fractionated by sucrose density gradient centrifugation in the presence and absence of Mg(2+) and alternatively by free-flow electrophoresis. An ER-enriched fraction was also prepared. The following enzymes were employed as specific membrane markers: antimycin A-insensitive NADH-cytochrome c reductase for ER, cytochrome c oxidase for mitochondrial membrane, pyrophosphatase for tonoplast, and 1,3-beta-D-glucansynthase for plasma membrane. In all membrane separations, InsP(3)-binding sites were concentrated in the fractions that were enriched with ER membranes. These data clearly demonstrate that the previously characterized InsP(3)-binding site from C. rubrum is localized on the ER. This finding supports previous suggestions of an alternative non-vacuolar InsP(3)-sensitive calcium store in plant cells.  相似文献   

17.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.  相似文献   

18.
Fragments of rough and smooth endoplasmic reticulum purified from rat liver were injected into Xenopus oocyte cytoplasm. Light and electron microscopy, cytochemistry, immunocytochemistry, and enzyme assay were employed to determine the fate of heterologous membranes in the host cytoplasm. The in vivo-incubated microsomes disappeared in a time-dependent manner. Within 3 hr, rough microsomes were replaced by flattened ER cisternae and smooth microsomes were replaced by a network of anastomosing tubules. Polyclonal antibodies against rat liver microsomes and protein A-gold complexes were applied to glycol methacrylate sections of microinjected oocytes. Specific labeling was observed over discrete rough and smooth ER cisternae 3 hr after microinjection. Endogenous ER was not labeled by this technique, and label was not observed when sections were treated with pre-immune antibodies. Diaminobenzidene cytochemistry of microinjected rat lacrimal gland microsomes revealed enzyme activity in heterologous microsomes after 3 hr of in vivo incubation. Control injected microsomes (inactivated by heat denaturation) became associated with autophagic vacuoles, coincident with changes in lysosomal activity. Freshly isolated un-denatured microsomes did not provoke changes in lysosomal activity, and glucose-6-phosphatase activity associated with microinjected membranes could be detected 21 hr after in vivo incubation. Since rat liver microsomes reconstitute after in vivo incubation into cytoplasmic structures resembling those from which they were derived, we conclude that the microinjected membrane fragments act as templates for their own three-dimensional organization.  相似文献   

19.
Rough and smooth microsomes and Golgi membranes were incubated with UDP[14C]galactose and the incorporation of radioactivity into the lipid extract and into endogenous protein acceptors were measured. Antagonistic pyrophosphatases were inhibited with ATP and interference from β-galactosidase activity was greatly decreased by carrying out the incubation at pH 7.8. After incubation the particles were centrifuged to remove free oligosaccharide residues. Radioactivity was found in the lipid extract from Golgi membranes but not from rough and smooth microsomes. This radioactivity, however, was not associated with dolichol or retinyl phosphates. The incorporation of radioactivity into proteins of the Golgi fraction was more than double than that of the microsomal fractions. In addition, the transferases in these two types of particles exhibited different properties. Trypsin treatment of intact rough microsomal vesicles, smooth vesicles and Golgi membranes removed about 5, 15 and 50%, respectively, of newly incorporated protein-bound galactose, indicating that the proportion of the newly galactosylated proteins, which are localized at the cytoplasmic surface of the membrane, is lowest in rough microsomes, intermediate in smooth, and highest in Golgi membranes.  相似文献   

20.
Summary Structures identified as subsurface cisterns (SSC's) and lamellar bodies (LB's) have been observed in the neurons, but not in the glial cells, of the rat and cat substantia nigra. The SSC's are most often opposite what appears to be glial cells, but they are also subsynaptic in position. A single, large (0.4–1.5 ), unfenestrated, usually flattened cistern closely underlies the inner aspect of the plasma membrane of the perikaryon and proximal parts of the neuronal processes at a regular interval ranging about 100–130 Å. They are sheet-like or discoid in configuration and consists of a pentalaminar structure which usually widens at its lateral edges where its membranes are continuous with each other or with rough ER profiles. Filaments, about 70 Å thick, bridge the cleft between the SSC and the overlying plasmalemma. One or more ER cisterns devoid of ribosomes except on their outermost membrane may be stacked up parallel to an SSC and immediately subjecent to it. A dense filamentous network intervenes between the SSC and its closely applied ER cisterns. At higher magnification, it is seen to consist of a finely textured material which is apparently composed of loosely packed tiny particles. These constituent subunits in turn may represent transverse sections of very fine filaments rather than granules. A mitochondrion frequently occurs in the immediate vicinity of an SSC and may be closely applied to its deep surface. Stacks of unfenestrated, parallel, regularly spaced (about 300–400 Å) cisterns, designated lamellar bodies, appear deeper in the karyoplasm. They are most often flattened and appear as pentalaminar structures. These cisterns, as well as the dense filamentous network intervening between them, are structurally similar to those closely applied to SSC's. They are also devoid of ribosomes except on their outermost surfaces. Whorls of similar cisterns are also occasionally observed. Another particular feature of the rough ER consists of the close apposition of two cisterns without any ribosome attached to the inner membranes of the latter structure. It evokes a simplified type of LB's. It is of particular interest to point out that all these cisterns, i.e. the SSC's, their closely applied cistern(s) and those forming the LB's, are connected to the RER membranes, so that a continuous channel occurs between the nuclear membrane and the SSC which closely underlies the plasma membrane. Our observations show that the SSC's and the LB's are structurally related forms of the ER. A parallel may be drawn between the SSC and the lateral element(s) of a dyad (triad). The structural complex consisting of an SSC, the overlying plasmalemma and the cross-bridges linking them, indeed, bears some resemblance to a dyad. It is suggested that membranes which are closely applied may interact, resulting in alterations in their respective properties. These patches of the neuronal plasma membrane associated with SSC's may, therefore, have special properties because of this relationship, resulting in a non-uniform spread of an action potential on the neuronal surface. The possible significance of SSC's in relation to neuronal electrophysiology, as well as of the latter structures and LB's in relation to cell metabolism, is to be discussed.This work was supported by grant MA-3448 from the Medical Research Council of Canada. The skilful technical assistance of Mrs. Marjolaine Turcotte is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号