首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The interaction of antimalarial drug quinacrine (QA) with polynucleotides is studied by UV- visible absorption, fluorescence and surface-enhanced Raman spectroscopy(SERS). The polynucleotides employed for such a study were calf thymus DNA, poly(A).poly(T), poly(A).poly(U), poly(C).poly(G) and poly(dG-dC).poly(dG-dC). Absorption and fluorescence spectra of QA complexes indicate that an interaction with the biomolecule is taking place, although different interaction mechanisms are probable depending on the sequence. The SERS spectra also reflect spectral changes which depend on the polymer sequence and that can be correlated to those observed by fluorescence, with the advantage of the detailed structural information provided by this vibrational technique. QA interacts with polynucleotides through its diprotonated form and by ring stacking. The strength of such interaction is extremely sequence dependent, thus suggesting different interaction mechanisms in each case. The SERS technique allows the simultaneous study of those polynucleotide moieties that are directly involved in the interaction thanks to the short-range character of the SERS spectroscopy. The interaction of QA with the above nucleic acids lead to a different change in the chain stability and flexibility which is further related to the different denaturation tendency of the polymer in the presence of the metal surface.  相似文献   

2.
The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.  相似文献   

3.
The interaction of sanguinarine with right-handed (B-form), left-handed (Z-form) and left-handed (HL-form) structures of poly(dG-dC).poly(dG-dC) has been investigated by measuring the circular dichroism (CD) and UV-absorption spectral analysis. Sanguinarine binds strongly to the B-form DNA and does not bind to Z-form or HL-form, but it converts the Z-form and the HL-form back to the bound right handed form as evidenced from CD spectroscopy. Sanguinarine inhibits the rate of B to Z transition under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. UV absorption kinetic studies show that the Z-form reverses back to B-form to B-form on binding to sanguinarine. Binding isotherms obtained from spectrophotometric data show that sanguinarine binds strongly to the B-form polymer in a non-cooperative manner, in sharp contrast to the highly cooperative interaction under Z-form and HL-form polynucleotides. These studies reveal that the alternating GC sequence undergoes defined conformational changes and interacts with sanguinarine which may be an important aspect in understanding its extensive biological activities.  相似文献   

4.
DNA condensation was only observed after the addition of Hoechst 33258 (H33258) among various types of DNA binding molecules. The morphological structural change of DNA was found to depend on the H33258 concentration. On comparison of fluorescence spectrum measurements with AFM observation, it was found that fluorescence quenching of DNA-H33258 complexes occurred after DNA condensation. Additionally, we showed that DNA condensation by H33258 was independent of sequence selectivity or binding style using two types of polynucleotides, i.e. poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Moreover, it was concluded that the condensation was caused by a strong hydrophobic interaction, because the dissolution of condensed DNA into its native form on dimethyl sulfoxide (DMSO) treatment was observed. This study is the first report, which defines the DNA condensation mechanism of H33258, showing the correlation between the single molecule scale morphology seen on AFM observation and the bulky scale morphology observed on fluorescence spectroscopy.  相似文献   

5.
The acridine dye quinacrine and its interactions with calf thymus DNA, poly(dA-dT) · poly (dA-dT), and poly (dG-dC) · poly(dG-dC) were studied by light absorption, linear dichroism, and fluorescence spectroscopy. The transition moments of quinacrine give rise to absorption bands polarized along the short axis (400–480-nm band), and the long axis (345-nm and 290-nm bands) of the molecule, respectively. Linear dichroism studies show that quinacrine intercalates into calf thymus DNA as well as into the polynucleotides, displaying fairly homogeneous binding to poly (dA-dT) · poly (dA-dT), but more than one type of intercalation site for calf thymus DNA and poly (dG-dC) · poly(dG-dC). Fluorescence spectroscopy shows that for free quinacrine the pK = 8.1 between the mono- and diprotonated states also remains unchanged in the excited state. Quinacrine bound to calf thymus DNA and polynucleotides exhibits light absorption typical for the intercalated diprotonated form. The fluorescence enhancement of quinacrine bound to poly (dA-dT) · poly(dA-dT) may be due to shielding from water interactions involving transient H-bond formation. The fluorescence quenching in poly(dG-dC) · poly(dG-dC) may be due to excited state electron transfer from guanine to quinacrine. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Interaction of the antimalarial drugs quinacrine and chloroquine with DNA has been studied extensively in order to understand the origin of their biological activity. These studies have shown that they bind to DNA through an intercalative mode and show little sequence specificity. All previous experiments were carried out using the racemic form of these drugs. We have investigated the binding of the enantiomeric forms of quinacrine and chloroquine to synthetic polynucleotides poly (dA-dT) · poly(dA-dT) and poly (dG-dC) · poly(dG-dC), and found interesting differences in their binding parameters. Quinacrine enantiomers have a much higher binding affinity for the two polynucleotides compared to those of chloroquine. The negative enantiomers were found to have higher binding affinity than the positive ones. The binding constant for the binding of quinacrine (?) to poly(dG-dC) · poly(dG-dC) was found to be about 3 times that of quinacrine (+). The differences in these binding affinities were further confirmed by equilibrium dialysis of the complexes of the polynucleotides with the racemic form of the drugs, which resulted in the enrichment of the dialysate with the positive enantiomer. CD spectra of the enantiomers and their polynucleotide complexes are reported. Changes in the fluorescence properties of quinacrine in the presence of the two polynucleotides are also described. Biological implications of these findings are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The interaction between the fluorescent dye YO (oxazole yellow) and the alternating polynucleotides [poly(dA-dT)]2[the duplex of alternating poly(dA-dT)]and [poly(dG-dC)]2[the duplex of alternating poly(dG-dC)] has been studied with optical spectroscopic techniques including absorbance, flow linear dichroism, CD, and fluorescence measurements. The principal features of the spectra are very similar for the two polynucleotide solutions, showing that YO binds quite similarly to AT and GC base pairs. From a strongly negative reduced linear dichroism (LDr) in the dye absorption band, an induced negative CD, and transfer of energy from the bases to bound YO, we conclude that at low mixing ratios YO is intercalated in both [poly(dA-dT)]2 and [poly(dG-dC)]2. At higher mixing ratios an external binding mode starts to contribute, evidenced from the appearance of an exciton CD. The conclusion that YO binds in a similar way to AT and GC base pairs should be valid also for the dimer YOYO since its YO units have been found to bind to double-stranded (dsDNA) in the same way as the YO monomer. The fluorescence properties of YO and YOYO complexed with DNA or the polynucleotides have been characterized by studying the dependence of fluorescence intensity on temperature, mixing ratio, and ionic strength. The fluorescence intensity and fluorescence lifetime of YO-DNA decrease strongly with increasing mixing ratio, whereas the fluorescence intensity of YOYO-DNA shows a weaker dependence, indicating that the quantum yield depends on the distance between the YO chromophores on the DNA chain. Further, the fluorescence intensity of YO depends on the base sequence; the quantum yield and fluorescence lifetime for YO complexed with [poly(dG-dC)]2 are about twice as large as for YO complexed with [poly(dA-dT)]2. Measurements of excitation spectra at different mixing ratios and different emission wavelengths indicate that the fluorescence of the externally bound chromophores is negligible compared to the intercalated ones. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A general procedure for the study of conformational transitions of polynucleotides is described. The equilibria between different conformations induced by salt, ethidium bromide, and temperature of poly(dG-dC). poly(dG-dC) and induced by salt and temperature of poly(A). poly(U) are investigated using molecular absorption, circular dichroism, and fluorescence spectroscopies. Spectral data obtained from experiments are analyzed by means of a factor analysis method, namely, multivariate curve resolution, which allows possible intermediate states to be detected and the pure spectra and the concentration profiles of all species present in the system to be estimated. This work shows the application of this procedure for the analysis of data matrices obtained in individual experiments but also for the analysis of several data matrices simultaneously.  相似文献   

9.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7462-7471
The equilibrium binding of ethidium to the right-handed (B) and left-handed (Z) forms of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) was investigated by optical and phase partition techniques. Ethidium binds to the polynucleotides in a noncooperative manner under B-form conditions, in sharp contrast to highly cooperative binding under Z-form conditions. Correlation of binding isotherms with circular dichroism (CD) data indicates that the cooperative binding of ethidium under Z-form conditions is associated with a sequential conversion of the polymer from a left-handed to a right-handed conformation. Determination of bound drug concentrations by various titration techniques and the measurement of circular dichroism spectra have enabled us to calculate the number of base pairs of left-handed DNA that adopt a right-handed conformation for each bound drug; 3-4 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to the right-handed form for each bound ethidium, while approximately 25 and 7 base pairs switch conformations for each bound ethidium in complexes with poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2, respectively. The induced ellipticity at 320 nm for the ethidium-poly(dG-dC).poly(dG-dC) complex in 4.4 M NaCl indicates that the right-handed regions are nearly saturated with ethidium even though the overall level of saturation is very low. The circular dichroism data indicate that ethidium intercalates to form a right-handed-bound drug region, even at low r values where the CD spectra show that the majority of the polymer is in a left-handed conformation.  相似文献   

10.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

11.
Abstract

The influence of base composition (and sequence) on the process of interaction between synthetic polynucleotides and spermine, has been investigated using ultraviolet (including second derivative) spectroscopy, and electric dichroism.

Different binding modes of spermine to poly(dG-dC) as compared to A-T containing polynucleotides, were evidenced. An interaction with the N7 and 06 of guanine is probably partially involved in the former case while simple electrostatic interaction with the phosphate groups would dominate in the latter.

In the intermediate binding range (spermine over DNA phosphate molar ratios Sp/P of the order of 0.1 to 0.2), the complexes with poly(dA) · poly(dT) and those with poly(dA-dT) displayed an important contribution of a permanent dipole moment to the orientation mechanism, as detected by the application of bipolar pulses in electric dichroism experiments. Just prior to precipitation (at Sp/P slightly larger than 0.3), these polynucleotides show electric dichroism and relaxation times characteristics corresponding to toroidal particles formation resulting from a bending of their chains. This implies asymmetric binding to phosphate sites on A-T containing polynucleotides. At low Sp/P ratios, spermine induced a stiffening of poly (dG-dC). No influence of spermine on the orientation mechanism of this polynucleotide was detected for Sp/P values ranging from zero to 0.35. The spermine-induced bending of A-T rich regions thus appears to be essential for DNA condensation into toroidal particles.  相似文献   

12.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

13.
Summary

Interactions of the antiretroviral hypericin molecule with polynucleotides, i.e. poly(dG-dC), poly(dA-dT), poly(rG) and poly(rC), have been studied in aqueous solutions by resonance Raman spectroscopy, using an UV excitation wavelength which induces a specific resonance enhancement of spectral band intensities corresponding to proper nucleic base modes of vibration. It is shown that : i) hypericin selectively interacts with the N7 sites of purines, ii) the strength of interaction depends on the polymer structure, and : iii) interaction with guanine is stronger than with adenine molecules.  相似文献   

14.
D Genest  B Malfoy 《Biopolymers》1986,25(3):507-518
A time-resolved fluorescence study of ethidium bromide (EB) in the presence of poly(dG-dC) and of poly(dG-dC) modified by chlorodiethylenetriamine platinum(II) chloride is presented under solvent conditions in which these polymers adopt the Z-conformation (high ionic strength). It is shown that these polynucleotides can intercalate a very small quantity of EB. The binding parameters have been determined. The fluorescence lifetime of EB is slightly higher when bound to the Z-conformation (?25 ns) than when bound to the B-conformation (?23.7 ns). The nature of the salt has been checked. In the presence of 2.5M NaClO4, no transition from the Z-conformation to another conformation is observed when EB is added. On the contrary, in the presence of 4.25M NaCl, EB induces a cooperative transition from the Z-conformation to a conformation characterized by a much higher affinity for EB intercalation. In the case of poly(dG-dC) this last conformation is identical to the one observed at low ionic strength (B-conformation), but in the case of the platinated polymer this conformation is slightly different, as judged by the smaller value of the fluorescence lifetime of the intercalated EB.  相似文献   

15.
Cis-dichlorodiammine platinum (II) has been reacted with synthetic polynucleotides either in B or in Z conformation. The binding of cis-dichlorodiammine platinum (II) stabilizes the Z conformation when reacted with poly (dG-m5dC) ·poly (dG-m5dC) in the Z conformation as shown by circular dichroism and by the antibodies to Z-DNA. On the other hand, the binding of cis-dichlorodiammine platinum (II) stabilizes a new conformation when reacted with poly(dG-dC)·poly(dG-dC) or poly (dG-m5dC)·poly(dG-m5dC) in the B conformation. The antibodies to Z-DNA bind to these platinated polynucleotides. In rabbits, the injection of platinated poly (dG-dC) poly (dG-dC) induces the synthesis of antibodies which recognize Z-DNA. In low salt conditions, the circular dichroism spectra of these platinated polynucleotides differ from those of B-DNA or Z-DNA. The characteristic31P nuclear magnetic resonance spectrum of Z-DNA is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

16.
Synthetic alternating GC-rich DNA polymers can adopt Hoogsteen base-paired structures (H(L)-form) under the influence of low pH and temperature. The interaction of aristololactam-beta-D-glucoside (ADG), a natural glucoside derivative of aristolochia group of alkaloids, with protonation-induced structures (H(L)-form) of poly(dG-dC).poly(dG-dC) and poly(dG-m(5)dC).poly(dG-m(5)dC) has been studied using different biophysical techniques. The binding of ADG to protonated DNA is characterized by typical hypochromism and bathochromism of the absorption spectrum of the alkaloid, quenching of steady state fluorescence intensity, decrease in quantum yield, increase in fluorescence polarization anisotropy values, increase in thermal transition temperature of polynucleotides following alkaloid binding and perturbation of circular dichroic spectrum of polynucleotides as a result of its interaction with the alkaloid. Scatchard analysis of the data indicates that ADG binds to protonated structures in a nonlinear noncooperative manner. The binding parameters determined from spectrophotometric titration data employing excluded site model indicate that protonated poly(dG-m(5)dC).poly(dG-m(5)dC) is more favorable for ADG binding than the corresponding nonmethylated analog. The binding of ADG to protonated structures renders a higher degree of stabilization against thermal denaturation compared to respective B-form-ADG interactions and induces a conformational switch to a bound altered form which is different from its interaction with B- and Z-form DNA structures. Thermodynamic parameters (Delta G degrees, Delta H degrees and Delta S degrees ) obtained by van't Hoff analysis of the data indicate that the binding of alkaloid to protonated structures is an exothermic process and the binding free energy arises primarily from a negative enthalpy change. Moreover, the binding leads to an increase in the contour length of protonated DNAs. These results suggest that ADG possibly binds to protonated DNAs by the mechanism of intercalation.  相似文献   

17.
Poly(dG-dC).poly(dG-dC) has been modified by reaction with 4-acetoxyaminoquinoline 1-oxide (Ac-4 HAQO), the ultimate carcinogen of 4-nitroquinoline 1-oxide. The circular dichroism (CD) spectra of the modified and unmodified polymers have been compared under various experimental conditions. The CD spectra were recorded in 1 mM phosphate, 50% (v/v) ethanol, 3.8 M LiCl and 95% (v/v) ethanol, conditions in which poly(dG-dC).poly(dG-dC) adopts the B-, Z-, C- and A-form respectively. In 1 mM phosphate buffer, poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO seems not to contain regions in the Z-form. Z-form induction could be progressively obtained by the addition of ethanol as follows: in the buffer with about 30% ethanol the modified polymer started to adopt the Z structure, while 40% of ethanol in the buffer was necessary for the unmodified polymer. In the 50% ethanol-1 mM phosphate buffer mixture (v/v), poly(dG-dC).poly(dG-dC) was entirely in the Z-form while poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO remained partially in the B-form. Enzymatic digestions with the nuclease S1 which is specific of the single-stranded DNA were carried out in order to support the modified poly(dG-dC).poly(dG-dC) CD study conclusions. The role played by the two major adducts on the conformational characteristics of modified polymer is discussed.  相似文献   

18.
Native and denatured DNAs and polynucleotides were modified by 4-acetoxyaminoquinoline-1-oxide, the ultimate carcinogen of 4-nitroquinoline-1-oxide (4 NQO). The N-( deoxyguanosin -C8-yl)-4-aminoquinoline-1-oxide adduct, the so-called "dG III," was quantified on the DNA and on poly(dG-dC) in absorption spectroscopy, by using a spectral property of dG III, i.e., the variation of the absorption spectrum as a function of the pH. Using the "free-dG III" absorption reference spectra, a simple graphic determination of the percentage of dG III was established by recording the absorption spectra of the 4-acetoxyaminoquinoline-1-oxide-modified polymers. It was found that the dG III adduct accounts for about 30% of the total modification in the case of native modified DNA and poly(dG-dC) and for about 70% in the case of denatured modified DNA.  相似文献   

19.
Mouse monoclonal antibody was elicited with 4-nitroquinoline 1-oxide (4NQO) modified poly(dG-dC).poly(dG-dC) and was characterized using enzyme-linked immunosorbent assay and radioimmunoassay. The antibody reacted specifically for 4NQO-poly(dG-dC).poly(dG-dC) but not for 4NQO modified DNA and synthetic polynucleotides such as poly(dG).poly(dC). The antibody crossreacted slightly with brominated or N-acetoxy-2-acetylaminofluorene modified poly(dG-dC).poly(dG-dC) known to adopt Z-conformation. The antibody may recognize unique conformational change in poly(dG-dC).poly(dG-dC) modified by 4NQO. The antibody should be useful for the detection of conformational change in DNA induced by chemical carcinogens.  相似文献   

20.
We used UV-vis absorption spectroscopy, fluorescence spectrophotometry and molecular docking calculations to investigate intermolecular interaction between the cationic dye, Nile blue (NB), and synthetic polynucleotides, poly(A-T), poly(G-C) and calf thymus DNA (Ct-DNA) at physiological pH. Strong hypsochromic absorbance and fluorescence quenching were observed that showed strong binding of NB to these polynucleotides and DNA. The binding affinity values derived from maximum absorption of the spectra of NB bound to various polynucleotides and Ct-DNA concentrations suggests that NB exhibits greater binding affinity to poly(G-C) than to poly(A-T). The thermodynamic parameters suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of NB to DNA. The molecular docking results suggested that NB was an intercalator of the stacked base pairs of Ct-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号