首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important consideration in the design of vaccines to prevent HIV-1 infection effective against different strains is the amino acid sequence conservation of antigenic determinants. Even one amino acid change can destroy the antigenicity of a site for the antibody or T-cell receptor. The comparisons of predicted T- and B-cell epitopes between human HIV-1, HIV-2 and monkey SIVMAC AIDS viruses are presented. The three major gene products (env, gag and pol) were examined. A number of epitopes were identical between strains of HIV-1. Our analysis highlights the problem of designing an effective HIV-1 and HIV-2 vaccine and also the problem of testing human vaccines in monkey models.  相似文献   

2.
An evolving dominance of human immunodeficiency virus type 1 subtype C (HIV-1C) in the AIDS epidemic has been associated with a high prevalence of HIV-1C infection in the southern African countries and with an expanding epidemic in India and China. Understanding the molecular phylogeny and genetic diversity of HIV-1C viruses may be important for the design and evaluation of an HIV vaccine for ultimate use in the developing world. In this study we analyzed the phylogenetic relationships (i) between 73 non-recombinant HIV-1C near-full-length genome sequences, including 51 isolates from Botswana; (ii) between HIV-1C consensus sequences that represent different geographic subsets; and (iii) between specific isolates and consensus sequences. Based on the phylogenetic analyses of 73 near-full-length genomes, 16 "lineages" (a term that is used hereafter for discussion purposes and does not imply taxonomic standing) were identified within HIV-1C. The lineages were supported by high bootstrap values in maximum-parsimony and neighbor-joining analyses and were confirmed by the maximum-likelihood method. The nucleotide diversity between the 73 HIV-1C isolates (mean value of 8.93%; range, 2.9 to 11.7%) was significantly higher than the diversity of the samples to the consensus sequence (mean value of 4.86%; range, 3.3 to 7.2%, P < 0.0001). The translated amino acid distances to the consensus sequence were significantly lower than distances between samples within all HIV-1C proteins. The consensus sequences of HIV-1C proteins accompanied by amino acid frequencies were presented (that of Gag is presented in this work; those of Pol, Vif, Vpr, Tat, Rev, Vpu, Env, and Nef are presented elsewhere [http://www.aids.harvard.edu/lab_research/concensus_sequence.htm]). Additionally, in the promoter region three NF-kappa B sites (GGGRNNYYCC) were identified within the consensus sequences of the entire set or any subset of HIV-1C isolates. This study suggests that the consensus sequence approach could overcome the high genetic diversity of HIV-1C and facilitate an AIDS vaccine design, particularly if the assumption that an HIV-1C antigen with a more extensive match to the circulating viruses is likely to be more efficacious is proven in efficacy trials.  相似文献   

3.
HIV selectively downregulates HLA-A and -B from the surfaces of infected cells to avoid detection by the immune system. In contrast, the HLA-C molecules are highly resistant to this downregulation. High expression level of HLA-C on the cell surface, which correlates with a single nucleotide polymorphism, is also associated with lower viral loads and slower progression to AIDS. These findings strongly suggest that HIV-1-derived peptides are efficiently presented by HLA-C and trigger the elimination of infected cells. Accordingly, the ability to detect these HLA-C-peptide complexes may be used for therapeutic targeting of HIV-1-infected cells and for measuring effective presentation of vaccine candidates after immunization with HIV-1-related proteins or genes. However, low level of HLA-C expression on the cell surface has impeded the development of such complex-recognizing reagents. In this study, we describe the development of a high-affinity human Ab that specifically interacts, at low pM concentrations, with a conserved viral T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. The human Ab selectively detects this complex on different cells and does not interact with a control complex that differed only in the presented peptide. Engineering lentiviruses to display this Ab endowed them with the same specificity as the Ab, whereas coexpressing the Ab and Fas ligand enables the lentiviruses to kill specifically Nef-presenting cells. Abs and pseudoviruses with such specificity are likely to be highly valuable as building blocks for specific targeting and killing of HIV-1-infected cells.  相似文献   

4.
HIV-1 infection decreases the number of CD4(+) T-cells, and apoptosis has been suggested among the mechanisms. Proteins of the Shc family are involved in a complex network of signal transduction, differentiation, and apoptotic response to stress in many different cell types. Out of three homologous gene products (ShcA, ShcB, and ShcC), only two splicing variants of ShA are expressed in T-lymphocytes, namely p46Shc and p52Shc. In the present study, we report that inhibition of p46Shc and p52Shc by a dominant negative mutant enhances the yield of HIV-1 particles production without affecting efficiency of viral gene expression in CD4(+)-infected cells. The increase in HIV-1 replication in cells expressing the dominant negative mutant isoform ultimately correlates with a decrease in the percentage of cells entering apoptosis. The data presented suggest that ShcA proteins can play a role in committing CD4(+) T-cells to apoptosis, as a response to HIV-1 infection.  相似文献   

5.
Naturally acquired cellular immunity in individuals who have been exposed to HIV-1 but have remained uninfected may hold clues for the design of an effective HIV vaccine. To determine the presence and nature of such an HIV-1-specific immune response, we evaluated the quantity and fine specificity of HIV-1-reactive IFN-gamma-secreting T cells in a group of highly exposed seronegative men having sex with men. All 46 ES reported frequent unprotected anal sex with known HIV-1-infected partners at enrollment, and high risk activities continued in at least one-half of the volunteers for up to >6 years of observation. Despite the high frequency of unprotected anal intercourse and potential HIV-1 exposure, the vast majority of individuals demonstrated no or very low numbers of HIV-1-specific, IFN-gamma-secreting T cells. Even when HIV-1 epitopes were presented by peptide-pulsed autologous dendritic cells in 15 of the highest risk volunteers, HIV-1-specific T cells remained infrequent, and the proportion of responders was not significantly different from that in a lower risk seronegative control cohort. Only PBMC from two individuals who have remained uninfected to date exhibited distinctly positive responses. However, these responses rarely persisted over time, single epitope specificities were identified in only one volunteer, and HIV-1-specific memory T cell clones did not expand in vitro. HIV-1-specific, IFN-gamma-secreting T cells are thus unlikely to substantially contribute to resistance against infection in most exposed seronegative men having sex with men.  相似文献   

6.
HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.  相似文献   

7.
Antisense RNA, transcribed intracellularly from constitutive expression cassettes, inhibits the replication of the human immunodeficiency virus type 1 (HIV-1) as demonstrated by a quantitative microinjection assay in human SW480 cells. Infectious proviral HIV-1 DNA was co-microinjected together with a fivefold molar excess of plasmids expressing antisense RNA complementary to a set of ten different HIV-1 target regions. The most inhibitory antisense RNA expression plasmids were targeted against a 1 kb region within the gag open reading frame and against a 562 base region containing the coding sequences for the regulatory viral proteins tat and rev. Experimental evidence is presented that the antisense principle is the inhibitory mechanism in this assay system.  相似文献   

8.
Despite the widespread use of molecular biology techniques, standardized methods for the measurement of HIV-1 proviral DNA are currently lacking and several discordant results are still present in different studies. To assess the clinical meaning of the proviral DNA load, a study group comprising seven different laboratories was set up to standardize a HIV-1 proviral DNA quantification method able to assess the DNA proviral load of the most relevant circulating HIV-1 subtypes. Reference samples (24 cellular samples infected with HIV-1 clade B, and 40 samples of peripheral blood mononuclear cells containing different concentrations of plasmids expressing different HIV-1 clades) were distributed and tested blindly. All laboratories employed hTERT gene as housekeeping gene and primers within the gag gene to quantify different HIV-1 clades. Inter-laboratory results did not differ statistically but showed only minor variations concerning HIV-1 DNA amounts and different HIV clades, with a good agreement among the laboratories participating in the study. Since test standardization represents a key step for future application in clinical practice, further studies of the patients' samples are in progress to establish the real meaning and utility of the proviral DNA load for clinical management of HIV-1 infected patients.  相似文献   

9.
Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation.  相似文献   

10.
Genome of all known retroviruses consists of two identical molecules of RNA, which are non-covalently linked. The most stable contact site between two RNA molecules is located near their 5' ends. The molecular interactions in the dimer linkage structure (DLS) in mature virions are currently unknown. Recently we suggested that the dimer linkage structure in human immunodeficiency virus 1 (HIV-1) contains both duplex and quadruplex domains and proposed a model of DLS in HIV-1Mal (Central African virus). In this paper we showed that similar models can be also built for HIV- 1Lai, a representative of the North-American and European viruses. One of the double-stranded domains in the model structures represents either an extended duplex formed by different pathways (through base pair melting and subsequent reannealing or by a recombination mechanism) or kissing loop complex. The quadruplexes contain both G- and mixed tetrads, for example, G.C.G.C or A.U.A.U. Phylogenetic analysis of 350 isolates from NCBI database showed that similar models of DLS are predictable practically for all HIV-1 isolates surveyed. A model of dimer linkage structure in Moloney murine sarcoma virus (MuSV) is also presented. The structure includes a duplex formed by the palindromic sequences and several quadruplexes.  相似文献   

11.
We have identified three types of cytoskeletal proteins inside human immunodeficiency virus type 1 (HIV-1) virions by analyzing subtilisin-digested particles. HIV-1 virions were digested with protease, and the treated particles were isolated by sucrose density centrifugation. This method removes both exterior viral proteins and proteins associated with microvesicles that contaminate virion preparations. Since the proteins inside the virion are protected from digestion by the viral lipid envelope, they can be isolated and analyzed after treatment. Experiments presented here demonstrated that this procedure removed more than 95% of the protein associated with microvesicles. Proteins in digested HIV-1(MN) particles from infected H9 and CEM(ss) cell lines were analyzed by high-pressure liquid chromatography, protein sequencing, and immunoblotting. The data revealed that three types of cytoskeletal proteins are present in virions at different concentrations relative to the molar level of Gag: actin (approximately 10 to 15%), ezrin and moesin (approximately 2%), and cofilin (approximately 2 to 10%). Our analysis of proteins within virus particles detected proteolytic fragments of alpha-smooth muscle actin and moesin that were cleaved at sites which might be recognized by HIV-1 protease. These cleavage products are not present in microvesicles from uninfected cells. Therefore, these processed proteins are most probably produced by HIV-1 protease digestion. The presence of these fragments, as well as the incorporation of a few specific cytoskeletal proteins into virions, suggests an active interaction between cytoskeletal and viral proteins.  相似文献   

12.
Human immunodeficiency virus (HIV)-specific helper T lymphocytes (HTL) play a key role in the immune control of HIV type 1 (HIV-1) infection, and as such are an important target of potential HIV-1 vaccines. In order to identify HTL epitopes in HIV-1 that might serve as vaccine targets, conserved HIV-1-derived peptides bearing an HLA-DR binding supermotif were tested for binding to a panel of the most representative HLA-DR molecules. Eleven highly cross-reactive binding peptides were identified: three in Gag and eight in Pol. Lymphoproliferative responses to this panel of peptides, as well as to the HIV-1 p24 and p66 proteins, were evaluated with a cohort of 31 HIV-1-infected patients. All 11 peptides were recognized by peripheral blood mononuclear cells from multiple HIV-infected donors. Many of the responsive HIV-infected subjects showed recognition of multiple peptides, indicating that HIV-1-specific T-helper responses may be broadly directed in certain individuals. A strong association existed between recognition of the parental recombinant HIV-1 protein and the corresponding HTL peptides, suggesting that these peptides represent epitopes that are processed and presented during the course of HIV-1 infection. Lastly, responses to the supermotif peptides were mediated by CD4(+) T cells and were restricted by major histocompatibility complex class II molecules. The epitopes described herein are potentially important components of HIV-1 therapeutic and prophylactic vaccines.  相似文献   

13.
The history of mankind over many millennia has been marred by many epidemics caused by viruses which infect the human respiratory system and alimentary tract. The current HIV-1/AIDS pandemic, however, is caused by one virus mutant, HIV-1M, which has evolved to infect humans through the genitals. The virus is able to use the innate system cells of the infected individual to inactivate the adaptive immune system, causing AIDS. The mechanisms used by HIV-1M to inhibit the immune system are presented. Understanding the viral mechanisms is leading to novel antiviral treatments and an approach to an HIV-1 vaccine.  相似文献   

14.
A chimeric virus library was designed whereby sequences corresponding to the V3 loop of human immunodeficiency virus type 1 (HIV-1) were presented on the surface of human rhinovirus 14. The V3 loop sequences consisted of a relatively conserved segment of seven amino acids and five adjacent residues that were allowed to vary in proportion to their seroprevalence among HIV-1 isolates of North America and Europe. A technique called random systematic mutagenesis was used to incorporate the composite V3 loop sequences flanked by zero to two randomized amino acids. This library could contain 2.7 x 10(8) members having diverse sequences and conformations. Immunoselection of a portion of this library by using two neutralizing V3 loop-directed monoclonal antibodies followed by selection for desirable growth and purification characteristics yielded a set of chimeric rhinoviruses, five of which are described. The inserted sequences in the five chimeras do not match those of any known isolate of HIV-1. Nonetheless, all five chimeras were neutralized by antibodies directed against different strains of HIV-1 and were able to elicit the production of antibodies that bind V3 loop peptides from diverse HIV-1 isolates. Moreover, antisera derived from four of the five chimeras were capable of neutralizing one or more strains of HIV-1 in cell culture. This study demonstrates that random systematic mutagenesis in conjunction with antibody screening is a powerful and efficient means to obtain antigenic chimeras with relevant immunogenic properties.  相似文献   

15.
Successful integration of viral genome into a host chromosome depends on interaction between viral integrase and its recognition sequences. We have used a reconstituted concerted human immunodeficiency virus, type 1 (HIV-1), integration system to analyze the role of integrase (IN) recognition sequences in formation of the IN-viral DNA complex capable of concerted integration. HIV-1 integrase was presented with substrates that contained all 4 bases at 8 mismatched positions that define the inverted repeat relationship between U3 and U5 long terminal repeats (LTR) termini and at positions 17-19, which are conserved in the termini. Evidence presented indicates that positions 17-20 of the IN recognition sequences are needed for a concerted DNA integration mechanism. All 4 bases were found at each randomized position in sequenced concerted DNA integrants, although in some instances there were preferences for specific bases. These results indicate that integrase tolerates a significant amount of plasticity as to what constitutes an IN recognition sequence. By having several positions randomized, the concerted integrants were examined for statistically significant relationships between selections of bases at different positions. The results of this analysis show not only relationships between different positions within the same LTR end but also between different positions belonging to opposite DNA termini.  相似文献   

16.
The growth inhibitory effects of Vpr and Vpx are species- and cell type-dependent. HIV-1, HIV-2 and SIV Vpr are primarily cytostatic in mammalian cells and HIV-1 Vpr has been reported to induce apoptosis in human cells. Our previous studies have shown that HIV-1, HIV-2 and SIV Vpr and Vpx have differential cytostatic and cytotoxic effects in the yeast cells [Zhang et al.: Virology, 230:103-112; 1997]. Here, we further examined the apoptosis function of HIV-1 Vpr in different species of mammalian cells and investigated if other primate lentiviral Vpr and Vpx exert similar functions. Our results show that none of the primate lentiviral Vpr or Vpx we tested induces apoptosis in nonhuman species of mammalian cells. However, HIV-1 Vpr, but not HIV-2 or SIV Vpr and/or Vpx, induced apoptosis in different types of human cell lines. Further, the apoptotic effect of HIV-1 Vpr can be distinguished from that of the human interferon-gamma, a known proapoptotic protein, that HIV-1 Vpr shows little to no paracrine and/or bystander effect. When coexpressed with Bcl-2 or Bcl-X(L), the apoptotic effect of HIV-1 Vpr became markedly attenuated. These results indicate that the apoptotic effect of HIV-1 Vpr is species-dependent and is intracellularly modulated by the Bcl-2 family of proteins. Our study also suggests that the proapoptotic function of HIV-1 Vpr is developmentally associated with human but not nonhuman primate species.  相似文献   

17.
Formation of large syncytia and rapid cell killing are characteristics of the Zairian human immunodeficiency virus type 1 isolate HIV-1-NDK, which is highly cytopathic for CD4+ lymphocytes in comparison with the HIV-1-LAV prototype. Chimeric viruses containing different combinations of HIV-1-NDK genetic determinants corresponding to the splice donor, the packaging signal, and the coding sequence of the p18gag protein together with the HIV-1-NDK EcoRI5278-XhoI8401 fragment were obtained by polymerase chain reaction-directed recombination. Phenotypic analysis of recombinant viruses indicated that 75 amino acids from the N-terminal part of HIV-1-NDK p18gag protein together with the HIV-1-NDK envelope glycoprotein are responsible for enhanced fusogenicity of HIV-1-NDK in CD4+ lymphocytes as well as for enhanced infectivity of HIV-1-NDK in some CD4- cells lines. The HIV-1-NDK splice donor/packaging sequence and the sequence encoding the gag protein p25 were not important for the variation observed in HIV-1 fusogenicity.  相似文献   

18.
Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection.  相似文献   

19.
The identification of HIV-1 cytotoxic T lymphocyte (CTL) epitopes presented by each HLA allele and the characterization of their CTL responses are important for the study of pathogenesis of AIDS and the development of a vaccine against it. In the present study, we focused on identification and characterization of HIV-1 epitopes presented by HLA-B*5401, which is frequently found in the Asian population, because these epitopes have not yet been reported. We identified these epitopes by using 17-mer overlapping peptides derived from HIV-1 Gag, Pol, and Nef. Seven of these 17-mer peptides induced HLA-B*5401-restricted CD8+ T cell responses. Only five HLA-B*5401-restricted Pol- or Nef-specific CD8+ T cell responses were detected in the analysis using 11-mer overlapping peptides. Three Pol and two Nef optimal peptides were identified by further analysis using truncated peptides. These epitope-specific CTLs effectively killed HLA-B*5401-expressing target cells infected with HIV-1 recombinant vaccinia virus, indicating that these peptides were naturally processed by HLA-B*5401 in HIV-1-infected cells. These epitope-specific CD8+ T cells were elicited in more than 25% of chronically HIV-1-infected individuals carrying HLA-B*5401. Therefore, these epitopes should prove useful for studying the pathogenesis of AIDS in Asia and developing a vaccine against HIV-1.  相似文献   

20.
We have characterized a murine monoclonal antibody (MAb 35), which was raised against human immunodeficiency virus type 1 (HIV-1) integration protein (IN), and the corresponding Fab 35. Although MAb 35 does not inhibit HIV-1 IN, Fab 35 does. MAb 35 (and Fab 35) binds to an epitope in the C-terminal region of HIV-1 IN. Fab 35 inhibits 3'-end processing, strand transfer, and disintegration; however, DNA binding is not affected. The available data suggest that Fab 35 inhibits enzymatic activities of IN by interfering with the ability of IN to form multimers that are enzymatically active. This implies that the C-terminal region of HIV-1 IN participates in interactions that are essential for the multimerization of IN. Titration of the various IN-mediated enzymatic activities suggests that different degrees of multimerization are required for different activities of HIV-1 IN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号