首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we demonstrate that cytoskeletons isolated from A431 cells have associated with them high activities of several kinases involved in inositol lipid metabolism, such as phosphatidylinositol kinase, phosphatidylinositol phosphate kinase, and diacylglycerol kinase. In addition also phospholipase C activity was detected on isolated cytoskeletons. Controlled extraction of the cytoskeletons followed by in vitro polymerization of actin demonstrated an association of the kinases to the actin filament system consisting of actin and a number of actin-binding proteins. The cytoskeleton-associated lipid kinase activities were significantly increased upon treatment of intact cells with EGF. These data suggest that the association of the phosphoinositide kinases, diacylglycerol kinase, phospholipase C, and also the EGF receptor to the cytoskeleton may play a role in the efficient signal transduction induced by EGF, by providing a matrix for the various components involved in signal transduction.  相似文献   

2.
The type II PIP kinases phosphorylate the poorly understood inositol lipid PtdIns5P, producing the multi-functional lipid product PtdIns(4,5)P(2). To investigate the regulation of these enzymes by phosphorylation, we partially purified a protein kinase from pig platelets that phosphorylated type IIalpha PIP kinase on an activation loop threonine residue, T376. Pharmacological studies suggested this protein kinase was protein kinase D (PKD), and in vitro experiments confirmed this identification. A phospho-specific antibody was developed and used to demonstrate phosphorylation of T376 in living cells, and its enhancement under conditions in which PKD was activated. Although we were unable to determine the effects of phosphorylation on PIP kinase activity directly, mutation of T376 to aspartate significantly inhibited enzyme activity. We conclude that the type II PIP kinases are physiological targets for PKD phosphorylation, and that this modification is likely to regulate inositol lipid turnover by inhibition of these lipid kinases.  相似文献   

3.
In Saccharomyces cerevisiae, cAMP-dependent phosphorylation plays an essential role at the start of the cell cycle. It has also recently been demonstrated that the breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate and diacylglycerol is a requisite process for cell proliferation (Uno, I., Fukami, K., Kato, H., Takenawa, T., and Ishikawa, T. (1988) Nature 333, 188-190). To clarify the relationship between the cAMP- and inositol phospholipid-mediated signal transduction systems, alterations in the inositol phospholipid metabolism of cAMP mutants were examined. The incorporation of [32P]Pi into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) was markedly reduced in ras2, which produces low levels of cAMP, and increased in bcy1, which produces cAMP-independent protein kinase. The incorporation of [32P]Pi into ATP and phosphatidylinositol (PI) was almost the same in wild type, ras1, ras2, and bcy1 yeast strains. The addition of exogenous cAMP to cyr1-2 caused a tremendous increase in [32P]Pi incorporation into PIP and PIP2 without any effect on incorporation into ATP and PI, suggesting that cAMP plays an important role in polyphosphoinositide synthesis. We therefore examined the activities of PI and PIP kinases, the enzymes that catalyze the sequential steps from PI to PIP2 via PIP. The activities of both kinases were found to be very low in the membranes of cry1-2 and ras2 but very high in the membranes of bcy1 and ras1 ras2 bcy1 strain cells. The addition of cAMP to cyr1-2 cells caused the activation of PI and PIP kinases. Furthermore, the treatment of membranes with cAMP or dibutyryl cAMP caused the activation of PI kinase in wild type, ras1, cry1-2, and ras2 strains, but not in bcy1 strain cells. The effect was most prominent in membranes from cyr1-2 and ras2 cells. These results show that cAMP-dependent phosphorylation enhances polyphosphoinositide synthesis through activation of PI and PIP kinase, an effect which may lead to the enhanced production of inositol 1,4,5-trisphosphate and diacylglycerol.  相似文献   

4.
Inositol lipid kinases have been studied extensively in both plant and animal systems. However, major limitations for in vitro studies of recombinant lipid kinases are the low specific activity and instability of the purified proteins. Our goal was to determine if cyclodextrins would provide an effective substrate delivery system and enhance the specific activity of lipid kinases. For these studies, we have used recombinant Arabidopsis thaliana phosphatidylinositol phosphate kinase 1 (At PIPK1). At PIPK1 was produced as a fusion protein with glutathione-S-transferase and purified on glutathione-Sepharose beads. A comparison of lipid kinase activity using substrate prepared in alpha-, beta-, or gamma-cyclodextrin indicated that beta-cyclodextrin was most effective and enhanced lipid kinase activity 6-fold compared with substrate prepared in Triton X-100-mixed micelles. We have optimized reaction conditions and shown that product can be recovered from the cyclodextrin-treated recombinant protein, which reveals a potential method for automating the assay for pharmacological screening.  相似文献   

5.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIalpha PtdInsP kinase, or transient overexpression of Type Ialpha or IIbeta PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1 min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases.  相似文献   

6.
The generation of phosphoinositides (PIs) with spatial and temporal control is a key mechanism in cellular organization and signaling. The synthesis of PIs is mediated by PI kinases, proteins that are able to phosphorylate unique substrates at specific positions on the inositol headgroup to generate signaling molecules. Phosphatidylinositol 5 phosphate 4 kinase (PIP4K) is one such lipid kinase that is able to specifically phosphorylate phosphatidylinositol 5 phosphate, the most recently discovered PI to generate the well-known and abundant PI, phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. PIP4K appears to be encoded only in metazoan genomes, and several genetic studies indicate important physiological functions for these enzymes in metabolism, immune function, and growth control. PIP4K has recently been reported to localize to multiple cellular compartments, including the nucleus, plasma membrane, endosomal systems, and autophagosome. However, the biochemical activity of these enzymes that is relevant to these physiological functions remains elusive. We review recent developments in this area and highlight emerging roles for these enzymes in cellular organization.  相似文献   

7.
Inositol lipid synthesis is regulated by several distinct families of enzymes [1]. Members of one of these families, the type II phosphatidylinositol phosphate kinases (PIP kinases), are 4-kinases and are thought to catalyse a minor route of synthesis of the multifunctional phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the inositide PI(5)P [2]. Here, we demonstrate the partial purification of a protein kinase that phosphorylates the type IIalpha PIP kinase at a single site unique to that isoform - Ser304. This kinase was identified as protein kinase CK2 (formerly casein kinase 2). Mutation of Ser304 to aspartate to mimic its phosphorylation had no effect on PIP kinase activity, but promoted both redistribution of the green fluorescent protein (GFP)-tagged enzyme in HeLa cells from the cytosol to the plasma membrane, and membrane ruffling. This effect was mimicked by mutation of Ser304 to alanine, although not to threonine, suggesting a mechanism involving the unmasking of a latent membrane localisation sequence in response to phosphorylation.  相似文献   

8.
AMP-activated protein kinase (AMPK) is an essential enzyme indispensable for energy sensing and metabolic homeostasis at both the cellular and whole-body levels. Phosphorylation of AMPK, a key step for its activation, is known to be regulated by upstream kinases such as liver kinase B1 (LKB1) and calmodulin-dependent protein kinase kinase-beta (CaMKKβ). Recent evidence shows that inositol polyphosphate multikinase (IPMK), which possesses both inositol phosphate kinase and lipid inositol kinase activities, can physiologically regulate AMPK signaling in cultured cells and in the arcuate nucleus. IPMK-mediated regulation of AMPK occurs through the dynamic protein interactions of IPMK with AMPK in response to glucose availability. Here we review and discuss a novel role for the hypothalamic IPMK signaling in the control of AMPK and central energy homeostasis.  相似文献   

9.
S P Eng  C S Lo 《Life sciences》1990,46(4):273-279
Synthetic wasp venom Mastoparan induced an increase of [3H] inositol phosphates levels and a corresponding decrease of [3H]inositol phospholipids levels in Madin-Darby canine kidney (MDCK) cells. The effect was dose (5-100 micrograms/ml) and time (1 to 15 min) dependent. Mastoparan also enhanced the endogenous activity of phosphatidylinositol kinase and phosphatidylinositol 4-monophosphate kinase. The effect was dose (25-75 micrograms/ml) and time dependent (1 to 15 min).  相似文献   

10.
Phosphoinositides (PIs) constitute a minor fraction of total cellular lipids in all eukaryotic cells. They fulfill many important functions through interaction with a wide range of cellular proteins. Members of distinct inositol lipid kinase families catalyze the synthesis of these phospholipids from phosphatidylinositol. The hydrolysis of PIs involves phosphatases and isoforms of PI-specific phospholipase C. Although our knowledge of the roles played by plant PIs is clearly limited at present, there is no doubt that they are involved in many physiological processes during plant growth and development. In this review, we concentrate on inositol lipid-metabolizing enzymes from the model plant Arabidopsis for which biochemical characterization data are available, namely the inositol lipid kinases and PI-specific phospholipase Cs. The biochemical properties and structure of characterized and genome-predicted isoforms are presented and compared with those of the animal enzymes to show that the plant enzymes have some features clearly unique to this kingdom.  相似文献   

11.
The biochemical events encompassing the dephosphorylation of protein kinase C substrates by protein kinase A activators have been investigated in a neurotumor cell line, NCB-20. Treatment of [32P]orthophosphate-labeled cells with protein kinase A activators (e.g. forskolin, dibutyryl cAMP, prostaglandin E1) resulted in an inhibition of protein kinase C activity due to a failure of the protein kinase C complex to translocate into the membrane. Phospholipase C activity, as measured by the synchronous release of diacylglycerol and inositol phosphates (inositol 1,4,5-trisphosphate, inositol 1,4-bisphosphate, and inositol 1-phosphate) in response to bradykinin, was inhibited up to 50% following exposure to protein kinase A activators. At the same time, phospholipase C-specific inositol phospholipid substrates (phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate) were found to accumulate in NCB-20 cells following treatment with protein kinase A activators. This suggests that phospholipase C may be altered through protein kinase A-mediated protein phosphorylation. Second messenger generation (inositol phosphates, diacylglycerol, and Ca2+) is therefore inhibited through cyclic AMP-mediated shutdown of the inositol lipid cycle at the level of phospholipase C.  相似文献   

12.
When platelets are stimulated by thrombin they immediately undergo inositol lipid hydrolysis via phospholipase C activation. However, subsequently an increased production of phosphatidylinositol 4,5-bisphosphate is observed. Phospholipases C were inhibited by lowering the cytoplasmic free calcium concentration by preincubation with Quin-2-tetra(acetoxymethyl) ester. Aggregation and secretion were also totally suppressed. Under these conditions we observed an increased labeling of phosphatidylinositol 4,5-bisphosphate, indicating a stimulation of inositol lipid kinases, independent of lipid hydrolysis by phospholipase C. Conversely the production of phosphatidylinositol 3,4-bisphosphate was totally abolished. These results suggest a different regulation of the kinases/phosphatases responsible for the production of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.  相似文献   

13.
To clarify the signal transduction mechanism of the erbB gene (virus oncogene) products leading to cell growth and transformation, the alteration of signal transduction induced by enhanced inositol phospholipid metabolism was studied in chick embryo fibroblast cells (CEF cells) transformed by gag-fused erbB gene-carrying virus (GEV cells). The incorporations of 32P into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate were markedly increased in GEV cells. In GEV cells, the activities of lipid kinases such as phosphatidylinositol (PI), PIP, and diacylglycerol (DG) kinases were also increased. The activities of other important enzymes involved in inositol phospholipid metabolism, such as CDP-DG:myo-inositol transferase and phospholipase C, were not changed in GEV cells. Increased inositol phospholipid metabolism might lead to the production of second messengers, such as 1,2-DG and inositol 1,4,5-trisphosphate. Indeed, the 1,2-DG content was also increased in GEV cells. Moreover, the activity of protein kinase C (the Ca2+/phospholipid-dependent enzyme), which should be stimulated by 1,2-DG, was elevated in GEV cells; the protein kinase C activity in the membrane fraction of GEV cells was especially high. When CEF cells were treated with tetradecanoylphorbol acetate, protein kinase C activator, plus Ca2+ ionophore, [3H]thymidine incorporation was markedly stimulated, and maximal stimulation was observed with 1 nM Ca2+ ionophore A23187 plus 100 nM TPA. On the other hand, when GEV cells were treated with TPA plus Ca2+ ionophore A23187, [3H]thymidine incorporation was consistently inhibited. Next, studies were made to determine whether the erbB gene product itself had kinase activity on PI, PIP, and DG after membranes were mildly solubilized with Triton X-100 to prevent inactivation of these kinases. Immunoprecipitates of a GEV cell lysate with antisera that reacted with the erbB gene product had PI kinase activity, whereas no activity was detected in those of lysates of uninfected CEF cells. However, the activity was very weak compared with the total cellular activity. No difference in the PIP and DG kinase activities of immunoprecipitates of cell lysates of uninfected CEF cells and GEV cells was observed. These results suggest that the erbB gene product enhances inositol phospholipid metabolism and subsequent signal transduction, but that the erbB gene product is not involved directly in lipid kinases, although it is closely associated with lipid kinase.  相似文献   

14.
The inositol phospholipid metabolism is one of the main pathways of signal transduction in cells. We measured the activities of its key enzymes in v-Ha-ras-transformed 208F rat fibroblasts. In the ras-transformed clones, incorporation of [32P]Pi into intermediates of the inositol phospholipid metabolism was stimulated. The activities of phosphatidylinositol and phosphatidylinositol-4-phosphate kinases in the transformed clones were about 35-50% more than in untransformed cells, indicating increased inositol phospholipid metabolism. However, the activity of diacylglycerol kinase in their membrane fraction was 25-35% less than that of untransformed cells, although the total diacylglycerol kinase activity did not change. The imbalance of these kinases could constitute one of the main reasons leading to the increased level of inositol phosphates and the accumulation of diacylglycerol to 2-2.2 times that in control 208F cells. Phosphatidylinositol-4,5-bisphosphate-phospholipase C activity did not change on the transformation when assayed under various conditions. The increased level of diacylglycerol caused intracellular translocation, activation, and down-regulation of protein kinase C changes which may be one of the essential events in transformation by the v-Ha-ras gene.  相似文献   

15.
Phosphatidylinositol phosphate kinases (PIPKs) have important roles in the production of various phosphoinositides. For type I PIP5Ks (PIP5KI), a broad substrate specificity is known. They phosphorylate phosphatidylinositol 4-phosphate most effectively but also phosphorylate phosphatidylinositol (PI), phosphatidylinositol 3-phosphate, and phosphatidylinositol (3,4)-bisphosphate (PI(3, 4)P(2)), resulting in the production of phosphatidylinositol (4, 5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol 3-phosphate, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P(2)), phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P(2)), and phosphatidylinositol (3,4,5)-trisphosphate. We show here that PIP5KIs have also protein kinase activities. When each isozyme of PIP5KI (PIP5KIalpha, -beta, and -gamma) was subjected to in vitro kinase assay, autophosphorylation occurred. The lipid kinase-negative mutant of PIP5KIalpha (K138A) lost the protein kinase activity, suggesting the same catalytic mechanism for the lipid and the protein kinase activities. PIP5KIbeta expressed in Escherichia coli also retains this protein kinase activity, thus confirming that no co-immunoprecipitated protein kinase is involved. In addition, the autophosphorylation of PIP5KI is markedly enhanced by the addition of PI. No other phosphoinositides such as phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, or phosphatidylinositol trisphosphate have such an effect. We also found that the PI-dependent autophosphorylation strongly suppresses the lipid kinase activity of PIP5KI. The lipid kinase activity of PIP5KI was decreased to one-tenth upon PI-dependent autophosphorylation. All these results indicate that the lipid kinase activity of PIP5KI that acts predominantly for PI(4,5)P(2) synthesis is regulated by PI-dependent autophosphorylation in vivo.  相似文献   

16.
In the erythrocyte, a membrane-bound serine/threonine protein kinase (a casein kinase) has been shown to phosphorylate a number of membrane proteins, modulating their function. Here we report that the membrane-bound protein kinase binds to membranes by an association with a minor membrane component contained in preparations of glycophorin (possibly a minor glycophorin). The binding of the kinase to glycophorins does not significantly modify kinase activity. However, upon binding, the kinase activity is potently inhibited by phosphatidylinositol 4,5-bisphosphate, and the affinity of the kinase for the glycophorins is increased. Other phospholipids or polyanions such as inositol 1,4,5-trisphosphate or 2,3-diphosphoglycerate do not affect protein kinase activity when the kinase is bound to membranes but do inhibit the solubilized membrane-bound kinase. In the erythrocyte, there is a cytosolic form of the casein kinase which is very similar, having the same molecular weight and substrate specificity as the membrane-bound casein kinase. The cytosolic casein kinase is inhibited by 2,3-diphosphoglycerate but much less so by glycophorin preparations containing phosphoinositol 4,5-bisphosphate. When the sequences of both casein kinases were compared by two-dimensional peptide mapping, it was found that the two kinases were very similar but not identical.  相似文献   

17.
18.
Isolated rat hepatocytes exposed to CCl4 showed a dramatic decrease in [32P] incorporation into proteins which was evident as early as 5 min after the haloalkane addition. DEAE cellulose separation of protein kinases present in both particulated and cytosolic fractions of hepatocytes revealed that only the calcium and phospholipids dependent protein kinase C was affected by the treatment with CCl4, while kinases not requiring these factors for their activity were unmodified. Several 4-hydroxyunsaturated aldehydes known to be produced during CCl4-stimulated lipid peroxidation were found to inhibit protein kinase C at micromolar concentrations, suggesting the possibility that peroxidative events might be responsible for the impairment of protein kinase C during CCl4 intoxication.  相似文献   

19.
PtdIns is synthesized at the endoplasmic reticulum and its intracellular distribution to other organelles can be facilitated by lipid transfer proteins [PITPs (phosphatidylinositol transfer proteins)]. In this review, I summarize the current understanding of how PITPs are regulated by phosphorylation, how can they dock to membranes to exchange their lipid cargo and how cells use PITPs in signal transduction and membrane delivery. Mammalian PITPs, PITPalpha and PITPbeta, are paralogous genes that are 94% similar in sequence. Their structural design demonstrates that they can sequester PtdIns or PtdCho (phosphatidylcholine) in their hydrophobic cavity. To deliver the lipid cargo to a membrane, PITP has to undergo a conformational change at the membrane interface. PITPs have a higher affinity for PtdIns than PtdCho, which is explained by hydrogen-bond contacts between the inositol ring of PtdIns and the side-chains of four amino acid residues, Thr59, Lys61, Glu86 and Asn90, in PITPs. Regardless of species, these residues are conserved in all known PITPs. PITP transfer activity is regulated by a conserved serine residue (Ser166) that is phosphorylated by protein kinase C. Ser166 is only accessible for phosphorylation when a conformational change occurs in PITPs while docking at the membrane interface during lipid transfer, thereby coupling regulation of activity with lipid transfer function. Biological roles of PITPs include their ability to couple phospholipase C signalling to neurite outgrowth, cell division and stem cell growth.  相似文献   

20.
Subcellular localisation of inositol lipid kinases in rat liver   总被引:5,自引:0,他引:5  
The subcellular distribution of the enzymes which phosphorylate phosphatidylinositol sequentially to form phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was investigated in rat liver. We demonstrate that whilst phosphatidylinositol kinase is present in Golgi, lysosomes and plasma membranes, the kinase that forms phosphatidylinositol 4,5-bisphosphate is localised predominantly at the plasma membrane. The role of the inositol lipid kinases in cell function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号