首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Hoekenga OA  Muszynski MG  Cone KC 《Genetics》2000,155(4):1889-1902
Epigenetic regulatory mechanisms heritably alter patterns of gene expression without changes in DNA sequence. Epigenetic states are often correlated with developmentally imposed alterations in genomic DNA methylation and local chromatin structure. Pl-Blotched is a stable epigenetic allele of the maize anthocyanin regulatory gene, purple plant1(pl). Pl-Blotched plants display a variegated pattern of pigmentation that contrasts sharply with the uniformly dark purple pigmentation of plants carrying the dominant Pl-Rhoades allele. Previously, we showed that the lower level of pigmentation in Pl-Blotched is correlated with lower pl mRNA levels and increased DNA methylation at some sites. To explore how DNA methylation, chromatin structure, and developmental stage might contribute to the expression of Pl-Blotched, we used methylation-sensitive restriction enzymes and DNaseI sensitivity assays to compare the methylation status and chromatin structure of Pl-Blotched and Pl-Rhoades at different stages in development. Both alleles exhibit developmentally sensitive changes in methylation. In Pl-Blotched, methylation of two diagnostic HpaII/MspI sites increases progressively, coincident with the juvenile-to-adult transition in growth. In seedlings, the chromatin encompassing the coding region of the gene is less sensitive to DNaseI digestion in Pl-Blotched than in Pl-Rhoades. Developmental maturation from seedling to adult is accompanied by expansion of this closed chromatin domain to include the promoter and downstream flanking sequences. We provide evidence to show that chromatin structure, rather than DNA methylation, is the primary epigenetic determinant for the phenotypic differences between Pl-Blotched and Pl-Rhoades.  相似文献   

7.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

8.
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.  相似文献   

9.
10.
11.
12.
13.
Activation of pyruvate,Pi dikinase by light was studied in leaf discs of maize which were illuminated for 1 h at light intensities ranging from approximately 3% to 50% of full sunlight and at temperatures of 10, 22.5, and 35°C. At the highest light intensity the degree of activation was similar and relatively independent of temperature between 10 and 35°C. Under low light the degree of activation was high at 10°C but decreased rapidly with increasing temperature. There was a similar effect of light and temperature on the activation of NADP-malate dehydrogenase.At low temperature, the rate of activation of pyruvate,Pi dikinase was relatively low and independent of the light intensity used and the rate of inactivation in the dark was extremely low. At high temperature, the rate of activation was high and dependent on the light intensity used while the rate of dark inactivation was also relatively high. The degree of activation is discussed in relation to the possible influence of light and temperature on the turnover between the active and inactive forms of pyruvate,Pi dikinase during illumination.This research was supported by the Japan-U.S. Cooperative Research Program (The Japan Society for the Promotion of Science, NFS Grant INT 78-17245), NSF Grant PCM 77-09284, by the Japanese Ministry of Education and by the College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin.  相似文献   

14.
15.
16.
Interphase nuclear structure was studied in 15 leguminous species. Eleven species showed chromocentric interphase nuclei while the remaining 4 had reticulate nuclei. The number of chromocenters appeared to be dependent on the number of chromosomes (2n). The total proportion of condensed chromatin as determined by planimetry was found to vary from 11–24% in chromocentric nuclei and 29–62% in reticulate nuclei. The condensed chromatin amount showed a direct correlation with the nuclear DNA content (2C). Though the interphase nuclear structure remained same in differentiated cells, the amount of condensed chromatin was considerably less than that in the meristematic cells, indicating underreplication of heterochromatin during differentiation. HCl-Giemsa method seems to be the simplest method for detection of underreplication in plants.1. NCL Communication No. 35942. To whom all the correspondence should be addressed  相似文献   

17.
18.
19.
In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).  相似文献   

20.
Specific cleavage of chromatin by restriction nucleases.   总被引:11,自引:11,他引:0       下载免费PDF全文
Digestion of mouse and rat liver nuclei with a restriction nuclease from Bacillus subtilis (Bsu) is examined in continuation of previous work from this laboratory (Pfeiffer et al., 1975, Nature 258, 450). The finding of more than 95% C in the 5'-termini of the DNA fragments generated during digestion with Bsu shows that the participation of endogenous nucleases in Bsu digestion is extremely small. The restriction nuclease Hae III, an isoschizomer of Bsu, yields identical degradation patterns. The patterns conform to what one expects from statistical calculations based on a nucleosome structure of chromatin with a region preferentially accessible to the nuclease of 40-50 nucleotide pairs per nucleosome. Integrity of the histones is maintained during digestion with restriction nucleases. Digestion of mouse liver nuclei with EcoRII shows that most if not all of the satellite DNA is organized in a nucleosome structure. Also in rat liver, much of the repetitive DNA appears to be present in nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号