首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two serine carboxypeptidases, MpiCP-1 and MpiCP-2, were purified to homogeneity from Monascus pilosus IFO 4480. MpiCP-1 is a homodimer with a native molecular mass of 125 kDa composed of two identical subunits of 61 kDa, while MpiCP-2 is a high mass homooligomer with a native molecular mass of 2,263 kDa composed of about 38 identical subunits of 59 kDa. This is unique among carboxypeptidases and distinguishes MpiCP-2 as the largest known carboxypeptidase. The two purified enzymes were both acidic glycoproteins. MpiCP-1 has an isoelectric point of 3.7 and a carbohydrate content of 11%, while for MpiCP-2 these values were 4.0 and 33%, respectively. The optimum pH and temperature were around 4.0 and 50°C for MpiCP-1, and 3.5 and 50°C for MpiCP-2. MpiCP-1 was stable over a broad range of pH between 2.0 and 8.0 at 37°C for 1 h, and up to 55°C for 15 min at pH 6.0, but MpiCP-2 was stable in a narrow range of pH between 5.5 and 6.5, and up to 50°C for 15 min at pH 6.0. Phenylmethylsulfonylfluoride strongly inhibited MpiCP-1 and completely inhibited MpiCP-2, suggesting that they are both serine carboxypeptidases. Of the substrates tested, benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu) was the best for both enzymes. The Km, Vmax, Kcat and Kcat/Km values of MpiCP-1 for Z-Tyr-Glu at pH 4.0 and 37°C were 1.33 mM, 1.49 mM min–1, 723 s–1 and 545 mM–1 s–1, and those of MpiCP-2 at pH 3.5 and 37°C were 1.55 mM, 1.54 mM min–1, 2,039 s–1 and 1,318 mM–1 s–1, respectively.  相似文献   

2.
A proteolytic thermophilic bacterial strain, designated as strain SF03, was isolated from sewage sludge in Singapore. Strain SF03 is a strictly aerobic, Gram stain-positive, catalase-positive, oxidase-positive, and endospore-forming rod. It grows at temperatures ranging from 35 to 65°C, pH ranging from 6.0 to 9.0, and salinities ranging from 0 to 2.5%. Phylogenetic analyses revealed that strain SF03 was most similar to Saccharococcus thermophilus, Geobacillus caldoxylosilyticus, and G. thermoglucosidasius, with 16S rRNA gene sequence identities of 97.6, 97.5 and 97.2%, respectively. Based on taxonomic and 16S rRNA analyses, strain SF03 was named G. caldoproteolyticus sp. nov. Production of extracellular protease from strain SF03 was observed on a basal peptone medium supplemented with different carbon and nitrogen sources. Protease production was repressed by glucose, lactose, and casamino acids but was enhanced by sucrose and NH4Cl. The cell growth and protease production were significantly improved when strain SF03 was cultivated on a 10% skim-milk culture medium, suggesting that the presence of protein induced the synthesis of protease. The protease produced by strain SF03 remained active over a pH range of 6.0–11.0 and a temperature range of 40–90°C, with an optimal pH of 8.0–9.0 and an optimal temperature of 70–80°C, respectively. The protease was stable over the temperature range of 40–70°C and retained 57 and 38% of its activity at 80 and 90°C, respectively, after 1 h.  相似文献   

3.
Thermostable lipase production by Geobacillus thermoleovorans was optimized in shake-flask cultures using Box-Behnken experimental design. An empirical model was developed through response surface methodology to describe the relationship between tested variables (Tween 80, olive oil, temperature and pH) and enzyme activity. Maximum enzyme activity (495 U l–1) was attained with Tween 80 at 5 g l–1; olive oil at 60 g l–1; 70 °C and pH 9. Experimental verification of the model showed a validation of 95%, which is more than 4-fold increase compared to the basal medium.  相似文献   

4.
A hyper-thermostable, alkaline lipase from a newly-isolated, mesophilic Pseudomonas sp. was optimal at pH 11 and at 90 °C. It had a half-life of more than 13 h at 90 °C. It was activated by 30% when heated at 90 °C for 2 h. The enzyme had a greater affinity for mustard oil (K m=40 mg ml–1) than for olive oil (K m=140 mg ml–1).  相似文献   

5.
Carboxypeptidase produced by Monascus purpureus IFO 4478 was purified to homogeneity. The purified enzyme is a heterodimer with a molecular mass of 132 kDa and consists of two subunits of 64 and 67 kDa. It is an acidic glycoprotein with an isoelectric point of 3.67 and 17.0% carbohydrate content. The optimum pH and temperature were 4.0 and 40 °C, respectively. The enzyme was stable between pH 2.0 and 8.0 at 37 °C for 1 h, and up to 50 °C at pH 5.0 for 15 min. The enzyme was strongly inhibited by piperastatin A, diisopropylfluoride phosphate (DFP), phenylmethylsulfonylfluoride (PMSF), and chymostatin, suggesting that it is a chymotrypsin-like serine carboxypeptidase. Monascus purpureus carboxypeptidase was also strongly inhibited by p-chloromercuribenzoic acid (PCMB) but not by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline, indicating that it requires cysteine residue but not metal ions for activity. Benzyloxycarbonyl-l-tyrosyl-l-glutamic acid (Z-Tyr-Glu), among the substrates tested, was the best substrate of the enzyme. The Km, Vmax, Kcat, and Kcat/Km values of the enzyme for Z-Tyr-Glu at pH 4.0 and 37 °C were 0.86 mM, 0.917 mM min–1, 291 s–1, and 339 mM–1 s–1, respectively.  相似文献   

6.
A dextran-hydrolysing enzyme from Lipomyces lipofer IGC 4042 was purified from the supernatant of cultures grown on a mineral medium with dextran, by ultrafiltration and gel filtration on Bio Gel A-0.5 m. This preparation gave only one band by disc gel electrophoresis. Glucose was the only product of dextran hydrolysis. Optimum pH and temperature for the activity of the enzyme were pH 4.5–5.0 and 45°C, respectively. The enzyme was most stable over a pH range of 4.5–6.0, and after 2 hours at 50°C maintained over 60% of its original activity. The molecular weight was 29,000 daltons and the isoelectric point was at pH 7. Km (45°C, pH 5) for dextran T-40 was 1.2×10–5 M. Glucose inhibited the enzyme competitively with a Ki (45°C, pH 5) of 0.5 mM.  相似文献   

7.
Panikov  N. S.  Popova  N. A.  Dorofeev  A. G.  Nikolaev  Yu. A.  Verkhovtseva  N. V. 《Microbiology》2003,72(3):277-284
The synthetic chemostat model (SCM), originally developed to describe nonstationary growth under widely varying concentrations of the limiting substrate, was modified to account for the effects of nontrophic factors such as temperature and pH. The bacterium Geobacillus uralicus, isolated from an ultradeep well (4680 m), was grown at temperatures ranging from 40 to 75°C and at pH varying from 5 to 9. The biomass kinetics was reasonably well described by the SCM, including the phase of growth deceleration observed in the first hours after a change in the cultivation temperature. At an early stage of batch growth in a neutral or alkalescent medium, bacterial cells showed reversible attachment to the glass surface of the fermentation vessel. The temperature dependence of the maximum specific growth rate (m) was fitted using the equation m = Aexp(T)/{1 + expB[1 – C/(T + 273)]}, where A, , B, and C are constants. The maximum specific growth rate of 2.7 h–1 (generation time, 15.4 min) was attained on a complex nutrient medium (peptone and yeast extract) at 66.5°C and pH 7.5. On a synthetic mineral medium with glucose, the specific growth rate declined to 1.2 h–1, and the optimal temperature for growth decreased to 62.3°C.  相似文献   

8.
Engelbert Weis 《Planta》1982,154(1):41-47
The heat-sensitivity of photosynthetic oxygen evolution of thylakoids isolated from spinach increases by increasing the pH above neutral value. The temperature for inactivation (transition temperature) is lowered from about 45° C (pH 6.0–7.4) to 33°C (pH 8.5). Similar results are obtained with intact chloroplasts. At pH 7.0 the transition temperature of washed thylakoids decreases by lowering the salt concentration below 20 mM with monovalent cations (Li+, Na+, K+) and below 3–4 mM with divalent cations (Mg2+, Ca2+, Sr2+). Illumination decreases the heat-sensitivity of oxygen evolution in intact chloroplasts, but even increases the heat-sensitivity in uncoupled chloroplasts. In intact chloroplasts the transition temperature of the heat-induced rise in chlorophyll fluorescence yield (Fo; see Schreiber and Armond 1978) decreases from 44° C to 38° C when the pH of the suspending medium is increased from 6.5 to 8.5. At 20° C, Fo is almost insensitive to pH (6.0–8.5). At 40° C, however, Fo is constant between 6.0 and 7.0, but strongly increases by increasing the pH above neutral value. The results are discussed in terms of a close relation between electrostatic forces at the thylakoid membrane and thermal sensitivity of photosynthetic apparatus. It is suggested that the heat-sensitivity of the photosystem II complex partially depends on the ionization state of fixed groups having alkaline pK. The packed volume of thylakoids suspended in a low salt medium increases when the temperature is increased above 30° C (pH 7.0) and above 20° C (pH 8.0), respectively. This result suggests a heat-induced increase in surface charge density of the thylakoid membrane.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MES morpholinoethane sulfonic acid - MOPS 2-N-morpholinopropane sulfonic acid - TRICIN N-[tris(hydroxymethyl)-methyl] glycine  相似文献   

9.
A thermophilic bacterium, which we designated as Geobacillus thermoleovorans 47b was isolated from a hot spring in Beppu, Oita Prefecture, Japan, on the basis of its ability to grow on bitter peptides as a sole carbon and nitrogen source. The cell-free extract from G. thermoleovorans 47b contained leucine aminopeptidase (LAP; EC 3.4.11.10), which was purified 164-fold to homogeneity in seven steps, using ammonium sulfate fractionation followed by the column chromatography using DEAE-Toyopearl, hydroxyapatite, MonoQ and Superdex 200 PC gel filtration, followed again by MonoQ and hydroxyapatite. The enzyme was a single polypeptide with a molecular mass of 42,977.2 Da, as determined by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry, and was found to be thermostable at 90°C for up to 1 h. Its optimal pH and temperature were observed to be 7.6–7.8 and 60°C, respectively, and it had high activity towards the substrates Leu-p-nitroanilide (p-NA)(100%), Arg-p-NA (56.3%) and LeuGlyGly (486%). The Km and Vmax values for Leu-p-NA and LeuGlyGly were 0.658 mM and 25.0 mM and 236.2 mol min–1 mg–1 protein and 1,149 mol min–1 mg–1 protein, respectively. The turnover rate (kcat) and catalytic efficiency (kcat/ Km) for Leu-p-NA and LeuGlyGly were 10,179 s–1 and 49,543 s–1 and 15,470 mM–1 s–1 and 1981.7 mM–1 s–1, respectively. The enzyme was strongly inhibited by EDTA, 1,10-phenanthroline, dithiothreitol, -mercaptoethanol, iodoacetate and bestatin; and its apoenzyme was found to be reactivated by Co2+ .  相似文献   

10.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely.  相似文献   

11.
Bisphenol A was efficiently removed by the polymerization and precipitation method using Coprinus cinereus peroxidase. The removal efficiency was optimal between pH 9–10 and at 40 °C with a molar ratio of H2O2 to bisphenol A of about 2. To remove 100 mg bisphenol A l–1, peroxidase was required 5 U ml–1 at pH 7 and 25 °C and 3 U ml–1 at pH 10 and 40 °C.  相似文献   

12.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

13.
Lactobacillus plantarum produced an extracellular tannase after 24 h growth on minimal medium of amino acids containing 2 g tannic acid l–1. Enzyme production (6 U ml–1) was optimal at 37 °C and pH 6 with 2 g glucose l–1 and 7 g tannic acid l–1 in absence of O2.  相似文献   

14.
Zusammenfassung Schweine in vier verschiedenen Alters- bzw. Gewichtsstadien (20–25 kg, 40–45 kg, 60–65 kg und 90–95 kg) wurden vergleichsweise 16° bis 23°C und in der Klimakammer bei 35°C und 70–90 RF ausgesetzt. Bei erhöhter Ta stieg die Rektaltemperatur (Tre) und gleichzeitig trat in allen 4 Gruppen eine Erhöhung der Atemfrequenz, eine geringgradige Zunahme der Plasmaosmolarität, sowie eine Hyperkalämie und Hyponatriämie ein. Stieg die Tre über 40.5°C setzt eine starke Speichelsekretion ein. Die Harnosmolarität nahm bis zu einer Rektaltemperatur von 40.5°C zu, um dann wieder abzusinken. Die Na+-Konzentration im Harn sank mit der Erhöhung der Tre ab, während die K+-Konzentration anstieg.
The effect of heat (Ta = 35°C, 70–90% rh) respiratory rate, rectal temperature (Tre), plasma and urine osmolarity, and of [Na+] and [K+] in plasma and urine in four different age/weight groups of pigs were investigated. At thermal neutral temperatures the measured physiological functions remained constant over 3 hours. At 35°C and 70–90% rh rectal temperature rose gradually. At the same time, there was a rise in respiratory rate, a slight increase in plasma osmolarity and a rise in plasma [K+] but a fall in plasma [Na+] in all four groups. The animals salivated profusely as soon as a rectal temperature of 40.5°C was reached. The urine osmolarity rose from normal to a maximum at a rectal temperature of 40.5°C and thereafter decreased. The urine [Na+] fell with increasing rectal temperature whereas the urine [K+] increased.

Resume Des porcs de 4 classes d'âge ou plus exactement de 4 groupes de poids (20 à 25 kg, 40 à 45 kg, 60 à 65 kg et 90 à 95 kg) ont été placés soit à des températures neutres de 16 à 23°C, soit en chambre climatisée par 35°C et 70 à 90% d'humidité relative. Par température neutre, les fonctions physiologiques restent constantes durant 3 heures au moins. Par température élevée, la température rectale (Tre) se relève et, parallèlement, on constante dans les 4 groupes une augmentation de la fréquence de respiration, une faible augmentation de la pression osmotique du plasma ainsi qu'une hausse des ions [ K+ ], mais une diminution des ions [Na+] du même plasma. Les animaux ont commencé à saliver abondament dès que Tre a atteint 40,5°C. La pression osmotique de l'urine a augmenté régulièrement de la normale jusqu'à un maximum atteint lorsque Tre est arrivé à 40,5°C. Elle a diminué ensuite même si Tre dépassait ce seuil. La concentration du sodium diminue avec la hausse de Tre alors que celui du potasse augmente. On discute enfin le rôle que jouent les paramètres mesurés dans la régulation de la température et du bilan de l'eau.
  相似文献   

15.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

16.
The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml–1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml–1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.  相似文献   

17.
Summary Dihydrofolate synthetase (EC 6.3.2.12) from N. gonorrhoeae was isolated and enzyme characteristics were determined. The purified enzyme was found quite stable when stored at –60 °C. About 50% of the enzyme activity wag destroyed within 6 weeks when kept at 4 °C. Maximum velocity was observed at pH 9.3. The enzyme required a monovalent cation, K+ or NH4 + , and divalent cation, Mg2+ or Mn2+ for its function. ATP at 5 mM concentration gave maximum activity. Km values for dihydropteroate and L-glutamate at pH 9.3 were 3.5 × 10–5 M and 6.5 × 10–4 M, respectively. Patterns of product inhibition by dihydrofolate were found to be non-competitive with respect to dihydropteroate, having a Ki value of 5.1 ± 0.8 × 10–4 M, and competitive with respect to L-glutamate, having a Ki value of 6.2 × 10–4 M.  相似文献   

18.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

19.
Statistical designs were used to optimize some parameters affecting the growth rate of a Brazilian strain ofThermoascus aurantiacus. The mycelial growth rate was measured using the horizontal tube method. Temperature of incubation and initial pH were the major factors affecting the growth rate. They were optimal at 6.0 and 48°C, respectively. The maximum growth rate was obtained in solid Czapek modified medium containing 1.5% glucose and 38.4 mEq L–1NaNO3. Under these conditions, the growth rate ofT. aurantiacus was 5.16±0.10 mm h–1. Lignin-related compounds such as tannins and extractive substances added at 0.1% (w/v) to the minimal Czapek medium increased growth rate 14% and 29%, respectively.  相似文献   

20.
Summary The Diamond Dove, Geopelia cuneata, is the world's second smallest (ca. 35 g) species of the columbid order. The Diamond Dove is endemic in the arid and semiarid Mulga and Spinifex regions of Central and Western Australia. It regularly encounters ambient temperatures (T a ) in its habitat above +40° C, especially when foraging for seeds on bare ground cover, and may be found at up to 40 km from water. This entails extreme thermal stress, with evaporative cooling constrained by limited water supply. Energy metabolism (M), respiration, body temperature (T a ) and water budget were examined with regard to physiological adaptations to these extreme environmental conditions. The zone of thermal neutrality (TNZ) extended from +34° C to at least +45° C. Basal metabolic rate (BMR) was 34.10±4.19 J g–1h–1, corresponding to the values predicted for a typical columbid bird. Thermal conductance (C) was higher than predicted. Geopelia cuneata showed the typical breathing pattern of doves, a combination of normal breathing at a stable frequency (ca. 60 min–1) at low T a and panting followed by gular flutter (up to 960 min–1) at high T a . At T a > +36° C, T a increased to considerably higher levels without increasing metabolic rate, i.e. Q10=1. This enabled the doves not only to store heat but also to save the amout of water that would have been required for evaporative cooling if T a had remained constant. The birds were able to dissipate more than 100% of the metabolic heat by evaporation at T a +44° C. This was achieved by gular flutter (an extremely effective mechanism for evaporation), and also by a low metabolic rate due to the low Q10 value for metabolism during increased T b . At lower T a , Geopelia cuneata predominantly relied on non-evaporative mechanisms during heat stress, to save water. Total evaporative water loss over the whole T a range was 19–33% lower than expected. In this respect, their small body size proved to be an important advantage for successful survival in hot and arid environments.Abbreviations and units Body Mass W (g) - Ambient Temperature T a (°C) - Body Temperature T b (°C) - Thermoneutral Zone (TNZ) - Metabolism M (J g–1 h–1) - Thermal Conductance C - wet Thermal Conductance C wet (J g–1 h–1 °C–1) - Evaporative Water Loss EWL (mg H2O g–1 h–1) - Evaporative Heat Loss EHL (J g–1 h–1) - Breathing Frequency F (breaths min–1) - Tidal Volume V t (ml breath–1) - Standard Temperature Pressure Dry STPD - Body Temperature Pressure Saturated BTPS - Respiratory Quotient RQ - n.s. not significant (P>0.05) - n number of experiments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号