首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two large multiple transmitter neurons are located in each buccal ganglion of Tritonia. One of these neurons (B11) contains large quantities of two neuropeptides and acetylcholine (ACh), whereas the other neuron (B12) appears to contain the same two peptides but no ACh. One of the peptides present in these neurons has recently been sequenced and is termed small cardioactive peptide B (SCPB). Both neurons regulate the motility of the gut. Stimulation of B11 produces a posteriorly directed peristalsis after a short latency. This gut movement may normally accompany swallowing. B11 stimulation also produces an increase in the rate of endogenous contractile activity that is similar to that produced by superfusion of the gut with low concentrations (10(-8) M) of SCPB. Stimulation of B12 produces a vigorous longitudinal contraction of the gut, initiated in the posterior part of the gut and not peristaltic in nature. This movement appears incompatible with swallowing behavior and may be involved in regurgitation.  相似文献   

2.
The buccal ganglia of the marine mollusc Tritonia control a variety of movements associated with feeding, including gut motility. The buccal ganglia and gut contain a class of peptides termed small cardioactive peptides (SCPs). Cobalt backfilling of the nerve which innervates the gut stains several buccal neurons including two pairs of reidentifiable cells, B11 and B12. Both appear white under epiillumination, a characteristic of peptidergic neurons in gastropods. Enzymatic and biochemical analyses of extracts from microdissected B11 cell bodies demonstrate that this neuron contains two species of SCPs. Labeling in organ culture followed by dissection and extraction of cell bodies indicates that these peptides were synthesized in B11. One of these peptides appears to be identical to SCPB, one of two SCPs that have been sequenced. The other SCP present in these neurons is novel. Less extensive analyses of extracts of B12 somata suggest that it also contains the same SCPs. In addition to the peptides, B11 also contains large quantities of acetylcholine (ACh) as determined by a radioenzymatic assay of cell body extracts. B12 does not contain measureable ACh. The concentration of the two peptides and ACh in the B11 cytoplasm is approximately 1 mM. Neuron B11 appears to be an appropriate model system for studying the biochemical and physiological properties of multiple transmitter neurons.  相似文献   

3.
Small cardioactive peptide B (SCPB) has an excitatory effect on both buccal neurons and musculature in numerous molluscan species. The present study reports the effects of SCPB on the activity of specified buccal neurons and the expression of the feeding motor program of the terrestrial slug, Limax maximus. Superfusion of an isolated CNS preparation with 10(-6)M SCPB results in a 3-4-fold increase in the burst frequency of the fast salivary burster neuron (FSB), while having no effect on the activity of another endogenous burster, the bilateral salivary neuron (BSN). The response of the FSB to SCPB is dose dependent, with a threshold concentration of 2 X 10(-8)M. The response of the FSB to SCPB showed no indication of desensitization, even after long-term exposure (20 min). The feeding motor program (FMP) in Limax is a discrete pattern of cyclical motor activity that can be initiated by lip nerve stimulation. In the presence of SCPB a previously subthreshold stimulus can initiate the full FMP. The pattern of the FMP, once initiated, appears unaffected by SCPB. Thus it is the responsiveness of the initiation process that is enhanced by SCPB. Histochemical studies revealed a number of buccal neuron somata and fibers that stain for SCPB-like immunoreactive material (SLIM).  相似文献   

4.
Important insights into mechanisms by which neuromuscular activity can be modulated have been gained by the study of experimentally advantageous preparations such as the ARC neuromuscular system of Aplysia. Previous studies have indicated that one source of modulatory input to the ARC muscle is its own two motor neurons, B15 and B16. Both of these neurons synthesize multiple peptide cotransmitters in addition to their primary neurotransmitter acetylcholine (ACh). Peptides present in the ARC motor neurons include SCPA, SCPB, buccalin A and B, and myomodulin A. We have now purified a novel neuropeptide, myomodulin B, which is structurally similar to myomodulin A. Myomodulin B is present in two identified Aplysia neurons that contain myomodulin A; the ARC motor neuron B16 and the abdominal neuron L10. Ratios of myomodulin A to myomodulin B are approximately 6:1 in both cells. Like myomodulin A, myomodulin B potentiates ARC neuromuscular activity; it acts postsynaptically, and increases the size and relaxation rate of muscle contractions elicited either by motor neuron stimulation or by direct application of ACh to the ARC. When myomodulin A is applied to the ARC in high doses (e.g., at about 10(-7) M), it decreases the size of motor neuron-elicited muscle contractions. This inhibitory effect is never seen with myomodulin B. Thus, despite the structural similarity between the two myomodulins, there exists what may be an important difference in their bioactivity.  相似文献   

5.
The SCPs are a family of neuropeptides found in many gastropodspecies. Two SCPs with similar sequences have been characterizedin Aplysia. These peptides are potent modulators of centraland peripheral synapses. They also enhance ongoing contractileactivity in spontaneously active tissues such as heart and gut.Their distribution in central ganglia suggests that their predominantrole is in the regulation of feeding behavior. There is goodevidence that the identified SCP-containing neurons, B1 andB2, provide the major central regulation of gut motility duringfeeding through the release of the SCPs from their terminalsin gut. The SCPs have also been localized to motor neurons thatinnervate buccal muscles which generate biting and swallowingmovements. In many of these neurons, the SCPs have been shownto coexist with conventional transmitters such as ACh, or otherpeptides such as FMRFamide. The SCPs appear to be released alongwith conventional transmitters from these neurons to modulatethe effectiveness of the conventional transmitter. In all cases,the SCPs cause an enhancement of the amplitude of contractionsproduced by motor neuron stimulation. The precise mechanismsunderlying this effect vary from muscle to muscle. All of theeffects of the SCPs are mediated by increased cAMP levels intarget tissue. At many sites of action, serotonin produces actionsthat are qualitatively similar to those of the SCPs. This islikely to involve a convergence at the level of the adenylylcyclase. In addition to these peripheral effects, the SCPs alsohave multiple central effects on feeding and other behaviorsin gastropods.  相似文献   

6.
1. Preliminary, general chemical characteristics of substances in artificial sea water (ASW) washed through stimulated body wall (SBW) and in hemolymph taken from noxiously stimulated animals (SHL) were consistent with those of classical neurotransmitters, amino acids, and small- to medium-sized peptides. 2. 5-Hydroxytryptamine (5HT) and acetylcholine (ACh), unlike SBW and SHL, caused relaxation when perfused into isolated body wall. FMRFamide produced a biphasic response--brief contraction followed by prolonged relaxation. 3. Small cardioactive peptide (SCPB) caused body wall contractions similar to those produced by SBW and SHL, except that SCPB contractions displayed more desensitization and were completely blocked by 30 mM CoCl2. SCPB and SBW contractions were synergistic. 4. Dopamine caused persistent body wall contractions similar to those of SBW and SHL. Dopamine contractions were reduced but not blocked by 30 mM CoCl2. Unlike SBW activity, dopamine activity was reduced by alkalinization. 5. Glutamate and taurine produced strong but usually short-lasting body wall contractions. Adenosine, octopamine, arginine vasotocin, and cholecystokinin (CCK-8) caused weak or variable contractions. Met-enkephalin and somatostatin caused no obvious body wall responses. 6. When superfused over the fully sheathed abdominal ganglion, FMRFamide, met-enkephalin, glutamate, aspartate, and taurine reduced the magnitude of the gill-withdrawal reflex elicited by siphon nerve stimulation. 7. Taken together with earlier results, these data suggest a preliminary framework for trauma signal pathways. It is proposed that stress hormones (perhaps including FMRFamide, SCPs, 5HT, and dopamine) are released into hemolymph from neuroendocrine cells. Effective amounts of active intracellular solutes such as amino acids may also be released by extensive cellular rupture. Various humoral signals produce slow effects that contribute to hemostasis, balling up, increased cardiac output, and reflex suppression.  相似文献   

7.
The buccal ganglia of seven nudibranches (Aeolidia papillosa, Armina californica, Dirona albolineata, D. picta, Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea) were examined to explore possible homologies between large cells that reacted with antibodies directed against small cardioactive peptide B (SCPB). The buccal ganglion of each species possessed a pair of large, dorsal-lateral, whitish neurons that contained an SCPB-like peptide. We refer to these neurons as the SLB (SCPB-immunoreactive Large Buccal) cells. In all species examined, the SLB cells project out the gastroesophageal nerves and appear to innervate the esophagus. In each species, an apparent rhythmic feeding motor program (FMP) was observed by intracellular recording from both SLB neurons and other neurons in isolated preparations of the buccal ganglia. SLB cells often fire at a high frequency, and usually burst in a specific phase relation to the FMP activity. Stimulation of SLB cells enhances expression of the feeding motor program, either by potentiating existing activity or eliciting the FMP in quiescent preparations. Finally, perfusion of isolated buccal ganglia with SCPB excites the SLB cells and activates FMPs. Thus, both the immunohistochemical and electrophysiological data suggest that the SLB cells within three suborders of the opisthobranchia (Dendronotacea, Arminacea, and Aeolidacea) are homologous. A comparison of our data with previously published studies indicates that SLB cell homologs may exist in other gastropods as well.  相似文献   

8.
The suprafusion of two endogenous neuropeptides, arginine vasotocin (AVT) and small cardioactive peptide B (SCPB), over the abdominal ganglion of Aplysia californica significantly affects the ability of a central gill motor neuron to elicit a gill withdrawal response. Gill motor neurons L7 or LDG1 were depolarized to produce the same number of action potentials (APs) on each trial. When AVT (10(-6)M) was suprafused, the motor neurons' ability to elicit a gill movement was suppressed; while SCPB (10(-6)M) superfusion facilitated the response. Neither peptide altered the passive membrane properties of the motor neurons nor did they affect the duration of their APs. These results are consistent with the hypothesis that the peptides act via central control neurons which exert both suppressive and facilitatory control over gill reflex behaviors and associated neural activity.  相似文献   

9.
Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.  相似文献   

10.
Central pattern generator (CPG) circuits control cyclic motor output underlying rhythmic behaviors. Although there have been extensive behavioral and cellular studies of food-induced feeding arousal as well as satiation in Aplysia, very little is known about the neuronal circuits controlling rhythmic consummatory feeding behavior. However, recent studies have identified premotor neurons that initiate and maintain buccal motor programs underlying ingestion and egestion in Aplysia. Other newly identified neurons receive synaptic input from feeding CPGs and in turn synapse with and control the output of buccal motor neurons. Some of these neurons and their effects within the buccal system are modulated by endogenous neuropeptides. With this information we can begin to understand how neuronal networks control buccal motor output and how their activity is modulated to produce flexibility in observed feeding behavior.  相似文献   

11.
12.
GABA was tested for its effects on patterned motor activity (PMA) underlying feeding. Using buccal motoneuron B19 to monitor PMA through intracellular recordings, GABA was found to exert effects at two levels. First, GABA stimulated rhythmic patterned activity resembling fictive feeding, which is under the control of the buccal CPG. In addition, GABA produced a direct inhibition of neuron B19. Both effects were observed when the buccal ganglia were studied in isolation from the rest of the central nervous system, suggesting local interactions with GABA receptors of buccal neurons. Furthermore, these two actions of GABA were found to be pharmacologically distinguishable. The direct hyperpolarization of neuron B19 was mimicked by muscimol, but not baclofen, and involved an increased chloride conductance, which was blocked by picrotoxin.Baclofen duplicated CPG activation by GABA. Picrotoxin had no effect on GABA- or baclofen-induced PMA.These results demonstrate that the Helisoma buccal ganglia have two GABA receptor types which resemble, pharmacologically, mammalian GABAA and GABAB receptors, and that GABA plays a key role in feeding patterned motor activity in Helisoma.Abbreviations CPG central pattern generator - GABA gammaamino butyric acid - HPLC high performance liquid chromatography - IPSP inhibitory postsynaptic potential - PMA patterned motor activity - SLRT supralateral radular tensor muscle  相似文献   

13.
The feeding pattern of the adult female of Blattella germanica peaks in the middle of the vitellogenic cycle. Following the hypothesis that a factor inhibiting gut peristalsis also inhibits food intake and is involved in the regulation of feeding, we searched for the most powerful myoinhibitory peptide in brain extracts from B. germanica females collected after the peak within the feeding cycle. Through HPLC purification and sequence analysis, we obtained the peptide leucomyosuppressin (LMS): pQDVDHVFLRFamide. LMS elicited a powerful myoinhibitory effect on B. germanica foregut and hindgut, with ED(50) values around 10(-10) M. In addition, it inhibited food intake in vivo in a dose-dependent manner at doses between 5 and 50 microg. The study of the distribution of ingested food in the foregut, midgut and hindgut of B. germanica females treated with LMS showed that food accumulates in the foregut, which may be due to the myoinhibitory effects of the peptide. We propose that this accumulation inhibits food intake because of the persistence of the signals from gut stretch receptors.  相似文献   

14.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

15.
Previous studies have shown that the nervous system and other tissues of molluscs contain a number of peptides that potently excite molluscan hearts. Two such peptides, termed small cardioactive peptides A and B (SCPA and SCPB) are present in large quantities in the nervous system of Aplysia. These peptides are widely distributed within the CNS and peripheral tissues and have been found to be potent modulators of synaptic transmission in Aplysia. SCPB has previously been purified from nervous tissue and sequenced. In this paper, we report the purification of SCPA and propose its sequence. This sequence was confirmed by comparing the chromatographic properties of native SCPA (labelled in organ culture) with a synthetic peptide that has the proposed sequence. A significant proportion of the sequence of the two SCPs is conserved, indicating that they are members of the same peptide class, a finding that is consistent with the recent observation that the two peptide sequences are present in a single precursor.  相似文献   

16.
The release processes of endogenous Acetylcholine (ACh), gamma-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700-800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 nM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl(2) by MgCl(2) in the superfusion medium reduced the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 x 10(-7) decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

17.
SCP-like antigenicity is first present in Tritonia diomedea in small cells of the cerebral ganglia and a single axon crossing the cerebral commissure of 8-day-old embryos. Other axons and neurons become antigenic as the larva develops. At 4-9 days after larvae hatch from the egg mass, 2 additional pairs of neurons are labeled. Axons extend from one pair to the left cerebral ganglion and from the other to the right. A second labeled axon is present across the cerebral commissure. In metamorphically competent larvae the cerebral and pedal neuropils, as well as two neurons in the buccal ganglia with axon(s?) across the commissure, are antigenic. The change in antigenicity as the larva becomes competent is presumably preparatory for juvenile life. The labeled buccal neurons may be B12, which are known to contain SCPs, extend an axon across the buccal commissure, and function in adult feeding behavior. The two large neurons strongly labeled by rabbit polyclonal antibodies against FMRFamide are clearly different from neurons labeled by monoclonal antibody against SCPs. This result supports the contention that different antigens are labeled by these two immune probes.  相似文献   

18.
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

19.
We analyzed the electrical activity of neuronal populations in the cerebellum and the lumbar spinal cord during fictive scratching in adult decerebrate cats before and after selective sections of the Spino-Reticulo Cerebellar Pathway (SRCP) and the Ventral-Spino Cerebellar Tract (VSCT). During fictive scratching, we found a conspicuous sinusoidal electrical activity, called Sinusoidal Cerebellar Potentials (SCPs), in the cerebellar vermis, which exhibited smaller amplitude in the paravermal and hemisphere cortices. There was also a significant spino-cerebellar coherence between these SCPs and the lumbar sinusoidal cord dorsum potentials (SCDPs). However, during spontaneous activity such spino-cerebellar coherence between spontaneous potentials recorded in the same regions decreased. We found that the section of the SRCP and the VSCT did not abolish the amplitude of the SCPs, suggesting that there are additional pathways conveying information from the spinal CPG to the cerebellum. This is the first evidence that the sinusoidal activity associated to the spinal CPG circuitry for scratching has a broad representation in the cerebellum beyond the sensory representation from hindlimbs previously described. Furthermore, the SCPs represent the global electrical activity of the spinal CPG for scratching in the cerebellar cortex.  相似文献   

20.
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem‐spinal cord preparation in the split‐bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138–1149, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号