共查询到20条相似文献,搜索用时 0 毫秒
1.
Bernhard Kraus 《Experimental & applied acarology》1994,18(7):435-443
Reproducing Varroa jacobsoni obtained from brood cells of Apis mellifera L. with 13–16 day old bees (pupae) and Varroa mites kept on adult bees for at least 8 days were simultaneously tested for their choice in three host types. Comparisons were made of attractiveness of Varroa jacobsoni to nurse bees, pollen foragers as to larvae from nearly capped brood cells. Host choices were observed in Petri dishes and in an Y-shaped olfactometer. Varroa jacobsoni obtained from capped brood cells showed a stronger preference for nurse bees in Petri dish simultaneous choice tests with pollen foragers or larvae than did mites which were previously kept on adult bees. In olfactometer simultaneous choice tests, the two mite test groups showed no clear difference in preferences for bees of different ages. The preference of Varroa jacobsoni for bees of different ages is therefore not only influenced by host factors but also by intrinsic factors in female mites that depend on the mite's reproductive stage. 相似文献
2.
3.
Lilia I. De Guzman Thomas E. Rinderer Lorraine D. Beaman 《Experimental & applied acarology》1993,17(4):283-290
Mite survival was measured on eight different substrates: cloth, wax comb, dead drones, dead workers, metal, wood, pollen and control. Trials were conducted at both 26°C and 13°C. Substrate type, temperature and their interactions significantly affected the survival ofV. jacobsoni. Longest survival (71±1.1 h) was recorded on dead worker bees (Apis mellifera L.) held at 26°C. Shortest survivals were observed on cloth (21±1.3 h), no substrate (21±1.3 h), metal (20±1.1 h) and pollen (18±1.3 h), all maintained at 13°C. 相似文献
4.
The mite Varroa jacobsoni was reared in artificial gelatin cells under laboratory conditions and the possible presence of factors inhibiting Varroa reproduction was studied. In cells infested with three mites, the mean offspring per female was reduced to 75% of that in singly infested cells. When gelatin cells were used for two successive rearing cycles, both the proportion of reproducing females and the offspring per reproducing female were significantly lower in cells that had contained an infested larva during the first rearing cycle than in those with an uninfested larva. The mean reduction of the offspring per female was 48%; this suggests that inhibitors of the reproduction are released into infested cells. Treatment of gelatin cells with the hexane extract of cells in which an infested bee pupa had developed caused a 21% reduction in the mean offspring per female, with a difference close to the significance level (p=0.07). 相似文献
5.
S. J. Martin 《Experimental & applied acarology》1995,19(4):199-210
A study carried out during the summer of 1994, in southern England, investigated the developmental times and mortality ofVarroa jacobsoni inApis mellifera drone cells. The position and time of capping of 2671 naturally infested drone cells were recorded. Six hours after the cell was capped, 90% of the mites were free from the brood food to start feeding on the developing drone. The developmental time of the mite's first three female offspring (133±3 h) and the male offspring (150 h) and the intervals between egg laying (20–32 h) were similar to those found in worker cells. However, the mortality of the offspring was much lower in drone cells than worker cells. The mode numbers of eggs laid were six and five in drone and worker cells, respectively. All offspring had ample time to develop fully in drone cells with the sixth offspring reaching maturity approximately 1 day before the drone bee emerged. Normal mites (those which lay five or six viable eggs) produced on average four female adult offspring but since only around approximately 55% of the mite population produced viable offspring the mean number of viable adult female offspring per total number of mother mites was 2 to 2.2 in drone cells. 相似文献
6.
7.
Varroa mite free colonies of the honey bee Apis mellifera L. were artificially infested, with either parasitized bees or infested worker brood. Queens were kept in cages to provide broodless conditions during the experiment. Parasites that fell to the bottom of the hive were monitored at 3–4 days intervals for three months. An acaricide treatment was used to recover mites still alive after this time period. Survivorship at each interval was calculated and life table functions of the phoretic mite cohorts were obtained. Trends in survival of Varroa cohorts showed maximum lifespans ranging from 80 to 100 days. Life expectancy of these phoretic cohorts at the beginning of the experiment ranges between 19 to 41, with a mean of 31 days. 相似文献
8.
Six honey bee colonies hived in Langstroth nuclei were each artificially infested with 100 phoretic Varroa mites. Hive debris on bottom inserts was inspected every 3–4 days. The adult Varroa mites were compared with mounted specimens and catalogued into lightly pigmented and darkly pigmented females. After 4 months, an acaricide treatment was used to estimate the final mite population. Based on light and dark adult counts, we propose a balancing equation that follows the Varroa population increase at 7 day intervals and allows the calculation of experimental population growth rates. The calculated Varroa finite rate of increase is =1.021. Exponential and logistic growth models fitted to the balancing equation data gave R
2=0.986 and R
2=0.991, respectively. To develop a more precise model it would be necessary to follow the population growth beyond our experimental data. 相似文献
9.
LikeApis cerana colonies,A. mellifera colonies also show removal response toVarroa-infested brood cells. Infested worker brood cells of artificially and naturally infested combs were detected by the worker bees to various degrees in all types of comb-material used.The bees uncap brood cells and remove larvae or pupae infested with one or two mites. The removal response of worker bees was stronger towards brood cells containing two mites than cells with one mite.The specific signals which cause the removal of brood cells infested withVarroa mites are unknown. Removal response toVarroa-infested brood cells in plastic comb-material (Jenter-and ANP-comb) was significantly higher than to brood in wax combs. Up to now we do not know to what extent this tolerance mechanism is influenced by genetic and environmental factors.Our experiments comparing the removal of freeze-killed brood with the removal of brood infested withVarroa mites demonstrate positive correlations. Considering the time-consuming method of the artificial infestation with living mites, the hygienic behaviour-including the removal of brood cells infested with mites-of large series of colonies can be tested using freeze-killed brood. 相似文献
10.
W. Rath 《Experimental & applied acarology》1991,10(3-4):289-293
A laboratory method was developed for rearing the mitesVarroa jacobsoni Oudemans andTropilaelaps clareae Delfinado and Baker to the adult stage. The method consists of infesting larvae ofApis cerana Fabricius andA. mellifera L. with mites in ELISA microtiter racks. 相似文献
11.
Josefina Steiner Peter A. Diehl Michèle Vlimant 《Experimental & applied acarology》1995,19(7):411-422
Reproduction in Varroa jacobsoni occurs only in cells of the capped honey bee brood. Female mites were sampled at different times after cell sealing and ovaries containing a vitellogenic oocyte of the first gonocycle were examined under an electron microscope. It was found that the cytoplasmic connection between the lyrate organ and the oocyte persists far into the vitellogenic growth phase. In addition, a large amount of yolk material is taken up from the haemolymph. All ultrastructural features characteristic of vitellogenesis, such as microvilli, coated pits, vesicles and growing yolk platelets, are present. If more than four Varroa females live in an overcrowded brood cell, they appear to be in stress conditions and their vitellogenic oocytes may become atretic. Alterations typical for oocyte degradation and oosorption were observed in such situations. 相似文献
12.
13.
Eight Apis mellifera syriaca colonies at the Jordan University of Science and Technology campus in Jordan were used in the experiments to detect defence behaviour of worker bees against Varroa jacobsoni . This defence mechanism was determined by the degree of damaged mites that dropped from naturally infested colonies on inserts placed under the brood nest from June to October 1998. The average percentage of all dropping mites that were injured was 22.8%. A total of 86.5% of amputated mites were pigmented and 13.5% were less pigmented. Amputation to the first pair of legs was more often seen. Most of the phoretic mites were concealed between sclerites laterally on the abdomen, with distinct preference between second and third tergites. The grooming activity of A. mellifera syriaca provides evidence of active mechanisms of resistance toward the parasitic Varroa -mite. 相似文献
14.
雅氏瓦螨对氟胺氰菊酯的抗性机理初探 总被引:1,自引:0,他引:1
用有效成分为1000μg/L的氟胺氰菊酯药液对雅氏瓦螨Varroa jacobsoniOudemans敏感个体的腹部表皮进行穿透性测定,结果表明药液无法通过表皮起毒杀作用。通过添加酶抑制剂多功能氧化酶(PBO)和酯酶(DEF)的增效测定,结果显示PBO在抗性和敏感螨中分别增加毒效为3.27和1.80倍;而DEF为3.23和1.67倍。反映在抗性蜂螨的抗药性与多功能氧化酶的活性有密切相关,也与酯酶活性有关。对抗性螨和敏感螨的羧酸酯酶的活力测定,显示出在抗性螨中酶活指数高140%以上。同时对酯酶电泳进行扫描,也发现抗性螨与敏感螨的峰值存在差异。 相似文献
15.
The fine structure of the female gonad of Varroa jacobsoni is described. There are two components: the ovary proper and the so-called lyrate organ. The ovary is the place where oocytes mature, embedded in a supporting tissue composed of two cell types: somacells 1 and somacells 2. The lyrate organ has a nutrimentary function and is comprised of two components: supporting cells and nutritive tissue. The supporting cells are similar to the somacells 2 in that they contain abundant microtubules. The nutritive tissue is an extensive syncytium. It is connected with the oocytes via intercellular bridges, the nutritive cords. Oocytes and nutritive tissue are thought to have derived from common stem cells. From fine structural evidence it is concluded that ribosomes are one of the most important components to be transported via the nutritive cords into the oocytes. However, an increase in number of mitochondria in the middle-stage oocytes may also be a consequence of transport of these organelles from the nutritive tissue into the oocytes. Further characteristics make plausible that the interdependences of oocytes and nutritive tissue are comparable to those found in meroistic ovarioles of insects. The somatic components do not seem to be as important as the follicle cells of insects, however. It is assumed that the evolution of a nutrimentary oogenesis speeds up embryogenesis. Thus, the differentiation of the female gonad of Varroa jacobsoni may have facilitated the species' adaptation to a development completed in a short and limited time within the shelter of the covered brood cell of the bee. 相似文献
16.
Randomly amplified polymorphic DNA (RAPD) was used to examine possible origin of Varroa jacobsoni Oudemans in the Americas. Among 64 primers screened, 2 primers provided variation which was informative for this study. All V. jacobsoni collected from the United States had the same banding pattern to that of mites collected from Russia, Morocco, Germany, Italy, Spain, and Portugal (Russian pattern). This banding pattern was different from the pattern found for mites collected from Japan, Brazil, and Puerto Rico (Japanese pattern). The Japanese pattern lacked a 766-bp band found in the Russian pattern (OPE-07). With primer OPP-03, the Russian pattern had a distinct band at 442 bp not found in the Japanese pattern. Two bands located at 675 and 412 bp were specific to the Japanese pattern. These results suggest that the V. jacobsoni of the United States is probably predominantly Russian in origin (via Europe), while the V. jacobsoni of Brazil and Puerto Rico are probably predominantly Japanese in origin. 相似文献
17.
18.
Varroa jacobsoni (Acari: Varroidae) is more than one species 总被引:5,自引:0,他引:5
Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia–Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study.Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas.Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control. 相似文献
19.
In 1991, the first losses of efficacy of tau-fluvalinate against the honeybee ectoparasite Varroa jacobsoni Oud. were recorded in Sicily. Since then, diminished efficacy with available pyrethroid treatments has been encountered in many regions of Italy. The aim of this study was to investigate the type of resistance in V. jacobsoni to the pyrethroid tau-fluvalinate by focusing on metabolic resistance mechanisms (detoxication). After developing a suitable application method, two synergists were used: piperonyl butoxide (PBO), as an inhibitor of the microsomal monooxygenases of the cytochrome P450 complex and S,S,S-tributylphosphorotrithioate (DEF), which blocks esterases. A significant decrease in the LC50 values of the susceptible and of the resistant mite strains after the application of PBO was observed. A slight decrease of the LC50 values was also observed after the application of DEF. However, this decrease was not significant. These results indicate that the resistance of Varroa mites to tau-fluvalinate can partly be explained by an increased detoxication due to the monooxygenases in the P450 system, which is blocked by PBO. Esterases seems to play a negligible role. Whether glutathione-S-transferases are involved, is still unknown, but other mechanisms, such as the modification of the binding sites and/or reduced uptake might be involved as well. 相似文献
20.
Very little data exists concerning the number of reproductive cycles performed by individual Varroa mites. To understand the population dynamics of the Varroa mite it is necessary to know the number of fertile female offspring each Varroa female produces during her lifetime. The lifetime reproduction capacity of the mite consists of the mean number of fertile female offspring produced during each reproductive cycle multiplied by the mean number of cell passages. This paper describes an experimental design to estimate the number of reproductive cycles where mites are transferred to new mite-free colonies for reproduction in sealed brood cells. The data presented suggests that the mean number of reproductive cycles performed by the individual female mite is larger than previously accepted. Under optimal conditions, the mean number of reproductive cycles by Varroa females is probably greater than 1.5 but less than 2. Furthermore, the results show that the reproductive success of Varroa females going into cells to reproduce is not influenced by previous brood cycles. 相似文献