首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Tunisia has experienced a variety of human migrations that have modeled the myriad cultural groups inhabiting the area. Both Arabic and Berber-speaking populations live in Tunisia. Berbers are commonly considered as in situ descendants of peoples who settled roughly in Palaeolithic times, and posterior demographic events such as the arrival of the Neolithic, the Arab migrations, and the expulsion of the "Moors" from Spain, had a strong cultural influence. Nonetheless, the genetic structure and the population relationships of the ethnic groups living in Tunisia have been poorly assessed. In order to gain insight into the paternal genetic landscape and population structure, more than 40 Y-chromosome single nucleotide polymorphisms and 17 short tandem repeats were analyzed in five Tunisian ethnic groups (three Berber-speaking isolates, one Andalusian, and one Cosmopolitan Arab). The most common lineage was the North African haplogroup E-M81 (71%), being fixed in two Berber samples (Chenini-Douiret and Jradou), suggesting isolation and genetic drift. Differential levels of paternal gene flow from the Near East were detected in the Tunisian samples (J-M267 lineage over 30%); however, no major sub-Saharan African or European influence was found. This result contrasts with the high amount of sub-Saharan and Eurasian maternal lineages previously described in Tunisia. Overall, our results reveal a certain genetic inter-population diversity, especially among Berber groups, and sexual asymmetry, paternal lineages being mostly of autochthonous origin. In addition, Andalusians, who are supposed to be migrants from southern Spain, do not exhibit any substantial contribution of European lineages, suggesting a North African origin for this ethnic group.  相似文献   

2.
Studies of the impact of post‐marital residence patterns on the distribution of genetic variation within populations have returned conflicting results. These studies have generally examined genetic diversity within and between groups with different post‐marriage residence patterns. Here, we directly examine Y chromosome microsatellite variation in individuals carrying a chromosome in the same Y haplogroup. We analyze Y chromosome data from two samples of Yemeni males: a sample representing the entire country and a sample from a large highland village. Our results support a normative patrilocality in highland Yemeni tribal populations, but also suggest that patrilocality is violated often enough to break down the expected correlation of genetic and geographic distance. We propose that a great deal of variation in male dispersal distance distributions is subsumed under the “patrilocal” label and that few human societies are likely to realize the idealized male dispersal distribution expected under strict patrilocality. In addition, we found almost no specific correspondence between social kinship and genetic patriline at the level of the clan (large, extended patrilineal kinship group) within a large, highland Yemeni village. We discuss ethnographic accounts that offer several cultural practices that explain exceptions to patrilocality and means by which social kinship and genetic patriline may become disentangled. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
Information on one Ecuadorian and three Peruvian Amerindian populations for 11 autosomal short tandem repeat (STR) loci is presented and incorporated in analyses that includes 26 other Native groups spread all over South America. Although in comparison with other studies we used a reduced number of markers, the number of populations included in our analyses is currently unmatched by any genome-wide dataset. The genetic polymorphisms indicate a clear division of the populations into three broad geographical areas: Andes, Amazonia, and the Southeast, which includes the Chaco and southern Brazil. The data also show good agreement with proposed hypotheses of splitting and dispersion of major language groups over the last 3,000 years. Therefore, relevant aspects of Native American history can be traced using as few as 11 STR autosomal markers coupled with a broad geographic distribution of sampled populations.  相似文献   

6.
7.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

8.
The arrival of Europeans in Colonial and post-Colonial times coupled with the forced introduction of sub-Saharan Africans have dramatically changed the genetic background of Venezuela. The main aim of the present study was to evaluate, through the study of mitochondrial DNA (mtDNA) variation, the extent of admixture and the characterization of the most likely continental ancestral sources of present-day urban Venezuelans. We analyzed two admixed populations that have experienced different demographic histories, namely, Caracas (n = 131) and Pueblo Llano (n = 219). The native American component of admixed Venezuelans accounted for 80% (46% haplogroup [hg] A2, 7% hg B2, 21% hg C1, and 6% hg D1) of all mtDNAs; while the sub-Saharan and European contributions made up ~10% each, indicating that Trans-Atlantic immigrants have only partially erased the native American nature of Venezuelans. A Bayesian-based model allowed the different contributions of European countries to admixed Venezuelans to be disentangled (Spain: ~38.4%, Portugal: ~35.5%, Italy: ~27.0%), in good agreement with the documented history. Seventeen entire mtDNA genomes were sequenced, which allowed five new native American branches to be discovered. B2j and B2k, are supported by two different haplotypes and control region data, and their coalescence ages are 3.9 k.y. (95% C.I. 0-7.8) and 2.6 k.y. (95% C.I. 0.1-5.2), respectively. The other clades were exclusively observed in Pueblo Llano and they show the fingerprint of strong recent genetic drift coupled with severe historical consanguinity episodes that might explain the high prevalence of certain Mendelian and complex multi-factorial diseases in this region.  相似文献   

9.
This article reports the nucleotide diversity within the control region of 42 mitochondrial chromosomes belonging to five South American native cattle breeds (Bos taurus). Analysis of these data in conjunction with B. taurus and B. indicus sequences from Africa, Europe, the Near East, India, and Japan allowed the recognition of eight new mitochondrial haplotypes and their relative positions in a phylogenetic network. The structure of genetic variation among different hypothetical groupings was tested through the molecular variance decomposition, which was best explained by haplotype group components. Haplotypes surveyed were classified as European-related and African-related. Unexpectedly, two haplotypes within the African cluster were more divergent from the African consensus than the latter from the European consensus. A neighbor-joining tree shows the position of two haplotypes compared to European/African mitochondrial lineage splitting. This different and putatively ancestral mitochondrial lineage (AA) is supported by the calibration of sequence divergence based on the Bos-Bison separation. The European/African mitochondria divergence might be subsequent (67,100 years before present) to that between AA and Africans (84,700 years before present), also preceding domestication times. These genetic data could reflect the haplotype distribution of Iberian cattle five centuries ago.  相似文献   

10.
The current Chilean population originated from admixture between aboriginal populations (Amerindians) and Spanish conquerors of European origin. Consequently, the unions that gave rise to the Chilean population were chiefly between Spanish males and aboriginal females, and not the converse. To test the hypothesis that the Y chromosome of the Chilean population is mainly of Spanish origin, while the other chromosomes are from mixed (European and aboriginal) origin, we studied the DYS19 and DYS199 loci in two samples. One sample was obtained from a high socioeconomic stratum, while a second sample was from a low stratum. We studied male blood donors (N = 187) from Santiago, the capital of the country. Subjects were typed for the autosomal ABO and Rh (locus D) blood groups, and for the Y-linked DYS19 and the DYS199 loci, reported as Y-chromosome haplotypes. The aboriginal admixture was estimated for each genetic marker. The percentage of aboriginal admixture was 38.17% for the ABO system and 31.28% for the Rh system in the low socioeconomic stratum and 19.22% and 22.5%, respectively, in the high stratum. Y-chromosome haplotype frequencies constructed from the DYS19 and DYS199 loci demonstrated that the main haplotypes were DYS19*14/DYS199 C, as is often the case with many European populations, and DYS19*13/DYS199 C. The aboriginal admixture from Y-haplotype frequencies was estimated to be 15.83% in the low socioeconomic stratum and 6.91% in the high stratum. These values are lower than the values found using autosomal genetic markers, and are consistent with the historical background of the population studied. This study highlights the population genetic consequences of the asymmetric pattern of genome admixture between two ancestral populations (European and Amerindian).  相似文献   

11.
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.  相似文献   

12.
The aim of this work was to perform a thorough analysis of the diversity of Y‐haplotypes in Spanish cattle. A total of 207 Bos taurus males were sampled across 25 European breeds, with a special focus on rare, local Spanish populations. Animals were genotyped with five Y‐specific microsatellites (INRA189, UMN0103, UMN0307, BM861 and BYM1), two indels (ZFY10 and USP9Y) and one SNP (UTY19). A new haplogroup, distinct from those described by Götherström et al. (2005), was identified and named Y1.2. Samples representing the three B. taurus Y‐haplogroups were genotyped for four additional Y chromosome SNPs (rs121919254, rs121919281, rs121919323 and rs137049553). Among these SNPs, only rs121919281 was informative in B. taurus and helped to confirm the new Y1.2 haplogroup. Analysis of a larger dataset of standardized haplotypes for 1507 individuals from 57 populations from Spain, other European countries and Africa showed the new Y1.2 haplogroup to be found exclusively in Spanish breeds. This finding reinforces the importance of local Spanish cattle as reservoirs of genetic diversity as well as the importance of the Iberian Peninsula in the history of cattle.  相似文献   

13.
The hypervariable region-1 and four nucleotide positions (10400, 10873, 12308, and 12705) of the coding region of mitochondrial DNA (mtDNA) were analyzed in 441 individuals belonging to eight populations (Daba, Fali, Fulbe, Mandara, Uldeme, Podokwo, Tali, and Tupuri) from North Cameroon and four populations (Bakaka, Bassa, Bamileke, and Ewondo) from South Cameroon. All mtDNAs were assigned to five haplogroups: three sub-Saharan (L1, L2, and L3), one northern African (U6), and one European (U5). Our results contrast with the observed high frequencies of a Y-chromosome haplogroup of probable Asian origin (R1*-M173) in North Cameroon. As a first step toward a better understanding of the evident discrepancy between mtDNA and Y-chromosome data, we propose two contrasting scenarios. The first one, here termed "migration and asymmetric admixture," implies a back migration from Asia to North Cameroon of a population group carrying the haplotype R1*-M173 at high frequency, and an admixture process restricted to migrant males. The second scenario, on the other hand, temed "divergent drift," implies that modern populations of North Cameroon originated from a small population group which migrated from Asia to Africa and in which, through genetic drift, Y-chromosome haplotype R1*-M173 became predominant, whereas the Asian mtDNA haplogroups were lost.  相似文献   

14.
Background and AimsThe number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers.MethodsWe obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes.Key ResultsOur analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions.ConclusionsKnowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.  相似文献   

15.
The uplift of the Andes was a major factor for plant diversification in South America and had significant effects on the climatic patterns at the continental scale. It was crucial for the formation of the arid environments in south-eastern and western South America. However, both the timing of the major stages of the Andean uplift and the onset of aridity in western South America remain controversial. In this paper we examine the hypothesis that the Andean South American groups of Heliotropium originated and diversified in response to Andean orogeny during the late Miocene and a the subsequent development of aridity. To this end, we estimate divergence times and likely biogeographical origins of the major clades in the phylogeny of Heliotropium, using both Bayesian and likelihood methods. Divergence times of all Andean clades in Heliotropium are estimated to be of late Miocene or Pliocene ages. At least three independent Andean diversification events can be recognized within Heliotropium. Timing of the diversification in the Andean lineages Heliotropium sects.Heliothamnus, Cochranea, Heliotrophytum, Hypsogenia, Plagiomeris, Platygyne clearly correspond to a rapid, late Miocene uplift of the Andes and a Pliocene development of arid environments in South America.  相似文献   

16.
Island Southeast Asia (ISEA) and Oceania host one of the world’s richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region’s male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region’s initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40–25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world’s least understood regions.  相似文献   

17.
Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow.  相似文献   

18.
19.
The cyprinid subfamily Danioninae is one of the most important fish groups due to its inclusion of the model fish, Danio rerio. Molecular investigations have shown that species traditionally placed in the Danioninae are non‐monophyletic, divided into two groups corresponding to the Danioninae and Opsariichthyinae. The Danioninae are further divided into three lineages, i.e. chedrins, danionins and rasborins. However, morphological characters determining the foregoing groups are unknown. To investigate the interrelationships among major lineages within the Danioninae, a phylogenetic analysis based on 43 morphological characters from 34 taxa was conducted. Parsimony analysis recovers the Danioninae and Opsariichthyinae to be distinguished by the Y‐shaped ligament, absent in the Danioninae while present in the Opsariichthyinae. The Danioninae are divided into two tribes, Danionini and Rasborini. The Rasborini, including Boraras, Brevibora, Horadandia, Kottelatia, Rasbora, Rasboroides, Rasbosoma, Trigonopoma and Trigonostigma, are diagnosed by presence of dark supra‐anal pigment and subpeduncular streak as well as presence of the rasborin process on epibranchial 4. The Danionini are composed of two subtribes, Danionina and Chedrina, the Danionina including Chela, Danio, Devario, Microdevario and Microrasbora, and the Chedrina comprising Chelaethiops, Esomus, Luciosoma, Megarasbora, Mesobola, Nematabramis, Opsarius, Raiamas and Salmophasia. The Danionina are diagnosed by the unossified interhyal and presence of the danionin foramen in the horizontal limb of the cleithrum while the Chedrina are characterized by the postcleithrum absent or greatly reduced and approximately normal to abdominal ribs when present.  相似文献   

20.
Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is <5% and African ancestry is barely detectable in the studied population. The largest genetic distances were between African versus Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号