首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermine in micromolar concentrations decreased the basal activity of a guanosine 3',5'-monophosphate (cGMP) phosphodiesterase from bovine brain but had no effect in the presence of Ca2+ plus the calcium-dependent regulatory protein (CDR) which increased the activity of the enzyme 4- to 6-fold. Similar effects of spermine were observed on the enzyme at several stages of purification. Spermidine and putrescine were also inhibitory but higher concentrations were required. In the absence of Ca2+ and CDR, the enzyme exhibited two apparent Km values for cGMP (2.5 and 20 microM) which were unaltered by spermine. In the presence of Ca2+ and CDR (when spermine had no effect on activity), a single Km (3.5 microM) was observed. Enzyme purified by chromatography on CDR-Sepharose was rapidly inactivated during incubation at 30 degrees C in 5 mM potassium phosphate buffer (pH 7.0) with EDTA and ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA). Spermine (20 microM) partially stabilized enzyme activity under these conditions, although it was somewhat less effective than 2 mM MgCl2. The inhibitory effects of spermine (or other polyamines) on basal phosphodiesterase activity, which can be overcome by Ca2+ and CDR, could be important in the regulation of cellular cyclic nucleotide content.  相似文献   

2.
Genes for elongation factor EF-1 alpha in the brine shrimp Artemia   总被引:5,自引:0,他引:5  
Neurospora crassa had a heat-stable (up to 95 degrees C), soluble cyclic nucleotide phosphodiesterase (PDE). Both unheated and heat-stable PDE activities were inhibited by micromolar concentrations of Ca2+. This inhibition was reversed by EGTA or EDTA in molar excess of the Ca2+ concentration. Calmodulin was not involved in the Ca2+ inhibition, nor was Ca2+ inhibition of the heat-stable PDE due to cleavage inactivation of the enzyme by a Ca2+-stimulated protease. In addition to Ca2+, several other cations inhibited the activity of the heat-stable enzyme. Cyclic AMP and cGMP, but not 2'3' cAMP were substrates for both unheated and heat-stable PDEs. This is the first report of a PDE which is inhibited by micromolar concentrations of Ca2+.  相似文献   

3.
As it was shown previoulsy by others, the membrane-bound phosphodiesterase (cyclic adenosine 3':5'-monophosphate phosphodiesterase) of rat epididymal fat cells was stimulated when intact cells were exposed to insulin. The levels of stimulation observed in the present study in the cell homogenate and microsomal fraction were approximately 2.0- to 2.5-fold and 2.5- to 3.0-fold, respectively, when the initial substrate level was 100 nM and insulin concentration was 1 to 3 nM. When the microsomal fraction was subjected to a sucrose density gradient centrifugation, most of the insulin-sensitive phosphodiesterase activity was fractionated into the "light" microsomal fraction which was rich in NADH2:potassium ferricyanide:oxidoreductase) and low in 5'-AMPase, adenylate cyclase, and insulin-binding activities. The latter three activities were mostly fractionated into the "heavy" microsomal fraction. Both basal and insulin-stimulated phosphodiesterase activities were low when cells were homogenized in the presence of N-ethylmaleimide or p-chloromercuribenzoate. The insulin-stimulated enzyme activity was also low when cells were homogenized in the presence of --SH compounds (e.g. dithiothreitol) or certain metal-chelating agents (e.g. ethylene glycol bis(beta-aminoethyl ehter)-N,N'-tetraacetate (EGTA)), or in a nitrogen atmosphere. The effect of EGTA was prevented by the addition of certain heavy metal ions but not by the addition of Ca2+ or Ca2+ plus Mg2+ ions. When cells were homogenized in the presence of certain oxidants (e.g. diamide, sodium tetrathionate, or air), a high plus-insulin activity was observed; this activity was not lowered by subsequent treatment of the enzyme with N-ethylmaleimede, EGTA, or fresh cell homogenate that was prepared in the presence of EGTA. However, the activity of an apparently oxidized enzyme could still be lowered by treatment woth dithiothreitol. A partially purified enzyme in the enzyme in the microsomal fraction was fairly stable both in basal and insulin-stimulated states (fully active after 35 days when kept at -20degrees). EGTA added to the homogenization buffer lowered the basal phosphodiesterase activity, but this effect was reversed by the addition of Ca2+ ions. EGTA also decreased the enzyme activity that was stimulated by norepinephrine. However, neither EGTA nor dithiothreitol had any effect on the activities of 5'-AMPase, NADH-dehydrogenase, and malate dehydrogenase of fat cells. The above data indicate that most of the insulin-sensitive phosphodiesterase and the so-called "cell membrane markers" are associated with different subcellular particles in the cell homogenate. In addition, the data seem to indicate that the insulin-stimulated phosphodiesterase has certain --SH groups and that the activity of the enzyme is stabilized when the --SH groups are oxidized by certain oxidants including molecular oxygen. It is suggested that the air oxidation of the enzyme is catalyzed by a trace of certain heavy metal ions and, therefore, can be blocked by a metal-chelating agent.  相似文献   

4.
C B Klee  M H Krinks 《Biochemistry》1978,17(1):120-126
The Ca2+-dependent, reversible, interaction of cyclic adenosine 3',5'-monophosphate (cAMP) phosphodiesterase with its activator has been used to purify the enzyme by affinity chromatography. Activator-dependent cAMP phosphodiesterase is only a minor component of the proteins specifically adsorbed in the presence of Ca2+ by the Ca2+-dependent activator protein coupled to Sepharose and subsequently released by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The major protein component can be partially resolved from the enzyme by gel filtration on Sephadex G-200. This protein has been purified to apparent homogeneity and shown to be composed of two polypeptide chains with molecular weights of 61,000 and 15,000 respectively. This protein is, by itself, devoid of phosphodiesterase activity and inhibits the activation of cAMP phosphodiesterase by its activator without affecting the basal activity. Thus, activation of cAMP phosphodiesteriase by the Ca2+-dependent activator protein may be controlled by interactions with yet a third component of the enzyme complex.  相似文献   

5.
Abstract— Cyclic nucleotide phosphodiesterase from bovine adrenal medulla was fractionated into multiple activities by two different procedures, sucrose gradient centrifugation and gel filtration. Extracts of frozen and thawed adrenal medulla homogenates gave two phosphodiesterase activity peaks following density gradient centrifugation. The higher molecular weight activity hydrolyzed both cyclic AMP and cyclic GMP; ethylene glycol-bis(aminoethyl ether)- N,N' -tetraacetic acid (EGTA) inhibited only the hydrolysis of cyclic GMP. The lower molecular weight activity hydrolyzed only cyclic AMP and was not inhibited by EGTA. The two activities were not interconverted by recentrifugation.
Gel filtration of cyclic nucleotide phosphodiesterase activity extracted from frozen and thawed adrenal medulla on Ultrogel AcA 34 resolved the enzyme into three distinct peaks of enzyme activity with molecular weights of 350,000 (Peak I), 229,000 (Peak II) and 162,000 (Peak III). The enzyme from fresh tissue was resolved into peak I and II and only a small fraction of Peak III. Peak I hydrolyzed both cyclic nucleotides, while peak II was a cyclic GMP-specific enzyme and peak III was specific for cyclic AMP. The hydrolysis of cyclic AMP by the activity in Peak I was markedly stimulated by cyclic GMP; the hydrolysis of cyclic GMP by peak II was inhibited by EGTA and stimulated by calcium and CDR (calcium-dependent regulator protein). Peak III, which appears to be particulate, is not activated by either cyclic GMP or calcium and CDR.  相似文献   

6.
Crude extracts of human lung tissue were examined for cyclic adenosine- and guanosine-3',5'-monophosphate (cAMP and cGMP) phosphodiesterase activities. Nonlinear reciprocal plots were observed for each substrate. DEAE-Sephadex chromatography of the extracts revealed four main fractions of activity, which were further purified by Sephadex gel filtration. The phosphodiesterase activity of the resulting individual fractions was partially characterized with respect to substrate specificity, kinetic parameters, apparent molecular weight (gel filtration), thermal stability at 30 and 37 degrees C, effect of the cyclic nucleotide not utilized as substrate, and the possible influence of Ca2+-dependent protein activator. The results indicate that the tissue contains phosphodiesterases with strict specificity and a high apparent affinity for each of the two cyclic nucleotides (the Km values determined were approximately 0.3-0.4 muM). The high affinity cAMP phosphodiesterase activity was enriched in two of the purified fractions; both activities probably represent fragments of the native high affinity cAMP specific enzyme. A third purified phosphodiesterase showed mixed substrate specificity. The Km value recorded for hydrolysis of either substrate with this enzyme was approximately 25 muM. A fourth, irregularly occurring, phosphodiesterase activity also showed mixed substrate specificity. The Km value registered for hydrolysis of either substrate with this fraction was approximately 0.4 muM. There was no evidence for a Ca2+-dependent specific activation by a boiled lung tissue supernatant of any of the purified enzymes.  相似文献   

7.
The effects of divalent cations on the induction of phosphodiesterase [EC 3.1.4.17] by cyclic adenosine 3',5'-monophosphate (cyclic AMP) were studied in Dictyostelium discoideum. When cells were incubated with 1 mM ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) in 20 mM Tris-HCl buffer, pH 7.5, for 2 h, the induction of cellular phosphodiesterase was inhibited by about 80%, and that of extracellular phosphodiesterase by about 65%. When cells were incubated with 1 mM EGTA for 1 h, 2 mM CaCl2 was added and the cells were further incubated for 1 h, the activities of cellular and extracellular phosphodiesterases were increased about 5 and 2.5 times, respectively, compared with those in the EGTA-inhibited cells. Although various other kinds of divalent cations were also studied, Ca2+ had the greatest effect on the induction. These results suggest that Ca2+ may participate in the induction of phosphodiesterase, and thus in the regulation of the development of the cellular slime mold.  相似文献   

8.
Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity.  相似文献   

9.
Most (85% or more) of the cyclic nucleotide phosphodiesterase (3' :5' -cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) activity of pig coronary arteries was found in the 40 000 times g supernatant fraction of homogenates of the intima plus media layer. Chromatography of the soluble fraction of this layer on DEAE-cellulose resolved two phosphodiesterase activities and a heat stable, non-dializable activator. Peak I activity had apparent Km values of 2-4 muM for cyclic GMP and 40-100 muM for cyclic AMP. Peak II activity was relatively specific for cyclic AMP and exhibited apparent negatively cooperative behavior. Peak I but not peak II activity could be stimulated 3-8-fold by the addition of the boiled activator fraction or a boiled crude supernatant fraction. Cyclic AMP hydrolysis by peak I or peak II was more rapid in the presence of Mn-2+ than Mg-2+, but the latter promoted hydrolysis of cyclic GMP by peak I more effectively than did Mn-2+ in the presence of activator. In the absence of added metals, ethylene bis(oxyethylenenitriol)tetra-acetic acid (EGTA) and EDTA both inhibited hydrolysis of cyclic AMP and cyclic GMP by phosphodiesterase activities in the supernatant fraction and in peak I, but EDTA produced more complete inhibition at lower concentrations than did EGTA. Imidazole (1 muM to 10 mM) had virtually no effect on the hydrolysis of cyclic AMP or cyclic GMP catalyzed by either of the two separated peaks or by total phosphodiesterase activities in crude supernatant or particulate fractions.  相似文献   

10.
A protein acting as inhibitor of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.1.) activity was found in the ox retina tissue. An inhibitor from one tissue (ox retina) effectively cross-inhibited a phosphodiesterase from another tissue (rat brain), indicating a lack of tissue specificity. Kinetic analysis showed that inhibition was independent of the time of preliminary incubation of the inhibitor with enzyme but dependent on its concentration in the reaction mixture. An inhibitor decreased the V of the enzyme and had no effect on its Km for cyclic adenosine-3':5'-monophosphate. The inhibitory effect was more pronounced with cyclic adenosine-3':5'-monophosphate than with cyclic guanosine-3':5'-monophosphate used as substrates of the reaction. The extractable form of the phosphodiesterase of the retina rod outer segments was much more sensitive to the inhibitory action than the membrane-bound one. The binding of labeled cyclic adenosine-3':5'-monophosphate to the inhibitory protein was shown not to occur. The inhibitor was sensitive to trypsin treatment, indicating that it was a proten attempt was mode to purify the inhibitory factor. Gel filtration indicated that the inhibitor had a molecular weight of 38 000.  相似文献   

11.
Brain cytoplasmic cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) requires an endogenous Ca2+-binding protein for ful activity. We now show that lysophosphatidylcholine also effectively enhances activator-deficient phosphodiesterase activity. Stimulation by both ligands was immediate and reversible; both rendered the enzyme more thermally labile, decreased the energy of activation, and increased the Vmax of phosphodiesterase without affecting its apparent Km for adenosine 3'5'-monophosphate. However, the cofactor requirements of the two ligands were different. Although the protein activator gave a greater stimulation than lysophosphatidylcholine, the simultaneous presence of the two gave a stimulation comparable to lysophosphatidylcholine, suggesting that the effect of the latter was predominant. Phosphodiesterase was also stimulated by oleic acid, cardiolipin, and phosphatidylinositol, albeit to a less extent.  相似文献   

12.
1. In the presence of Ca2+, a 5.3-S 3':5'-cyclic nucleotide phosphodiesterase (EC 3.1.4.17) from bovine ventricle was isolated and purified by (NH4)2SO4 precipitation and DEAE-cellulose and Affi-Gel Blue chromatography. The enzyme activity was enriched 800-fold by these procedures. 2. Sucrose-density gradient centrifugation, gel filtration and non-denaturing polyacrylamide-gel electrophoresis resolved a single enzyme species with an Mr of 89 000. 3. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the purified enzyme demonstrated a prominent protein band at Mr 59000 and a minor band of Mr 28000. Calmodulin was not detected. 4. The hydrolysis of micromolar concentrations of 3':5'-cyclic guanosine monophosphate (cyclic GMP) but not 3':5'-cyclic adenosine monophosphate (cyclic AMP) was stimulated by calmodulin. 5. Anomalous biphasic kinetics plots were observed for both the catalysis of cyclic AMP and cyclic GMP hydrolysis. Kinetic plots became linear in the presence of calmodulin. 6. After several months of storage at -20 degrees C, the 5.3-S enzyme was transformed into a 6.2-S cyclic GMP-specific enzyme and a 4.4-S non-specific form.  相似文献   

13.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

14.
Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.  相似文献   

15.
Contact of rat platelets with thrombin or the divalent cation ionophore A-23187, in the presence of extracellular calcium, resulted in the secretion of adenosine 3':5'-monophosphate (cyclic AMP) and guanosine 3':5'-monophosphate (cyclic GMP) phosphodiesterases. Significant association of calcium with platelets occurred during platelet surface contact with thrombin. Thrombin concentration to induce association of calcium virtually agreed with that to release the enzyme. The finding that A-23187 (5 to 20 muM) also provoked a rapid and marked association of extracellular calcium with platelets suggests that calcium mobilization into the intracellular environment may account, at least in part, for this association between platelet and calcium. Two different phosphodiesterases, a relatively specific cyclic AMP and a relatively specific cyclic GMP phosphodiesterase were secreted from platelets into the plasma in soluble form. The amounts of the phosphodiesterases secreted were dose- or time-dependent on thrombin (0.1 to 2 units) or A-23187 (5 to 20 muM) within 30 min. The enzyme release by thrombin was completely inhibited by heparin but the release by A-23187 was not. The two phosphodiesterases secreted seemed to correspond to the two enzymes isolated from platelet homogenates in many respects. Rat platelets contained, at least, three cyclic 3':5'-nucleotide phosphodiesterases, namely, two relatively specific cyclic AMP phoshodiesterases and a relatively specific cyclic GMP phosphodiesterase which were clearly separated from each other by Sepharose 6B or DEAE-cellulose column chromatography or sucrose gradient centrifugation. The two platelet cyclic AMP phosphodiesterase (Mr = 180,000 and 280,000) had similar apparent Km values of 0.69 and 0.75 muM with different sedimentation coefficient values of 4.9 S and 7.1 S, respectively. They did not hydrolyze cyclic GMP significantly. A cyclic GMP phosphodiesterase (Mr - 260,000) exhibited abnormal kinetics for cyclic GMP with an apparent Km value of 1.5 muM and normal kinetics for cyclic AMP with a Km of 300 muM. The properties of a platelet cyclic AMP phosphodiesterase (Mr = 180,000) and a platelet cyclic GMP phosphodiesterase were found to agree with those of the two phosphodiesterases released from platelets by thrombin or A-23187. Depletion of extracellular calcium by an addition of citrate, EDTA, or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) to the blood or platelet suspension resulted in a loss of the activity of the smaller form of platelet cyclic AMP phosphodiesterase (Mr = 180,000) and addition of calcium restored the activity of this cyclic AMP phosphodiesterase. Thus, calcium seemed to be involved in the mechanism of an occurrence of this smaller form of cyclic AMP phosphodiesterase as well as the secretion of this enzyme. Contact of human platelets with thrombin also resulted in the secretion of cyclic nucleotide phosphodiesterase which was dependent on the concentration of calcium. No species difference was observed in this respect.  相似文献   

16.
A simple dilution test for evaluating the individual effect on enzymatic activity of [Ca2+], [EGTA], or [Ca.EGTA] variations in Ca-EGTA buffers is presented. We verified that a 50-fold dilution of the buffer (25-0.5 mM) at constant pH did not affect [Ca2+] (measured with fura-2), whereas [EGTA] and [Ca.EGTA] varied. Therefore the test can be applied to evaluate the proper effect of Ca2+ in a Ca-EGTA buffer on enzyme activity because such an effect is expected to remain unchanged upon dilution of the buffer. Applications of the test are shown for three enzymes apparently sensitive to Ca2+ but found to be effectively influenced only by Ca.EGTA (liver glucose-6-phosphatase), EGTA (intestinal mucosa phosphatase), or indeed Ca2+ (brain cyclic nucleotide phosphodiesterase).  相似文献   

17.
Y Saitoh  J G Hardman  J N Wells 《Biochemistry》1985,24(7):1613-1618
Changes in the concentration of cytosolic Ca2+ are assumed to alter the activity of Ca2+-calmodulin-sensitive cyclic nucleotide phosphodiesterase in intact cells. However, this assumption is based on indirect evidence and by analogy from studies of enzyme activities in broken cell systems. We have developed a procedure for estimating the fraction of Ca2+-calmodulin-sensitive phosphodiesterase that is in an activated, ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) sensitive state in intact porcine coronary artery strips. The experimental approach involves homogenization of the strips and assay of cyclic guanosine monophosphate (cyclic GMP) phosphodiesterase activity under conditions that retard changes in the amount of the complex Ca2+-calmodulin-phosphodiesterase. Our findings indicate that cyclic GMP phosphodiesterase in intact coronary artery strips does associate with Ca2+-calmodulin and that interventions that change the concentration of Ca2+ in the cytosol of the intact strip change the extent of this functional association. Exposure to histamine (10 or 100 microM) or 50 mM KCl caused contraction and an increase in EGTA-sensitive cyclic GMP phosphodiesterase activity. Isoproterenol-induced relaxation of tissues that had been caused to contract with 10 microM histamine was accompanied by a reduction in EGTA-sensitive cyclic GMP phosphodiesterase activity to the same level as that present before contraction was initiated.  相似文献   

18.
3',5'-CAMP phosphodiesterase was partially purified from bovine cerebral cortex. A heat-stable activating factor was separated from the enzyme by chromatography on DEAE-cellulose. The enzyme in crude ammonium sulfate fractions was stimulated by 5 mM CaCl2. This stimulation was reversed by the calcium chelator EGTA. The main phosphodiesterase peak obtained by DEAE-cellulose chromatography was not stimulated by Ca2+. Upon addition of column effluent containing a heat stable factor, Ca2+ activation was restored. Protein activator was inactive when endogenous contaminating Ca2+ was complexed with EGTA. It was concluded that activation of phosphodiesterase requires the presence of both activator and Ca1+. From an analysis of activation of cGMP hydrolysis a kinetic model for the interaction of Ca2+ and protein activator with the phosphodiesterase was developed. Heterotropic cooperativity between the binding of Ca2+ and protein activator to the phosphodiesterase was observed, i.e., Ca1+ decreased the apparent dissociation constant for protein activator and protein activator decreased the apparent dissociation constant for Ca2+.  相似文献   

19.
Some properties of the soluble phosphatidylinositol phosphodiesterase (monophosphatidylinositol inositolphosphohydrolase, EC 3.1.4.10) of rabbit iris smooth muscle are described. Studies on its subcellular distribution showed that in this tissue the phosphodiesterase is not exclusively cytosolic. Thus, under our experimental conditions about 58% of the enzyme activity was found in the soluble fraction and the remainder was particulate. When the latter was treated with deoxycholate about 59% of the enzyme activity, compared to 86% of that of ATPase, was still bound to the particulate fraction. The kinetic properties of the enzyme (30--50% (NH4)2SO4 fraction) were examined. Maximum breakdown was 7.7 mumol/h per mg protein and occurred at pH 5.6. The products of [14C]arachidonic acid-labelled phosphatidylinositol were 1,2-diacylglycerol and a mixture of 86% myoinositol 1-phosphate and 14% myoinositol 1,2-(cyclic)phosphate. The enzyme has an absolute requirement for Ca2+. Addition of Ba2+, La3+, Mg2+, Mn2+, EGTA or EDTA at 0.05--5 mM concentrations; Sr2+ at higher concentrations (greater than 0.25 mM) markedly inhibited the phosphodiesterase activity and this inhibition was completely reversed by Ca2+. The enzyme is specific for the phosphoinositides.  相似文献   

20.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号