首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Sedlák E 《Biopolymers》2007,86(2):119-126
Cytochrome c (cyt c) undergoes a poly(vinylsulphate) (PVS)-induced transition at slightly acidic pH into a molten globule-like state that resembles the effect that negatively charged membrane surfaces have on this protein. In this work, the thermodynamic properties of the molten globule-like state of cyt c in complex with PVS are studied using differential scanning calorimetry, circular dichroism, fluorescence, and absorbance spectroscopy. The temperature-induced transition of the molten globule-like state of cyt c in the complex with PVS is characterized by a significantly lower calorimetric enthalpy than in the \"typical\" molten globule state of cyt c, i.e. free protein at pH 2.0 in high ionic strength. Moreover, the thermally-denatured state of cyt c in the complex at pH < 6 contains nearly 50% of the native secondary structure. The dependence of the transition temperature on the pH indicates a role for histidine residues in the destabilization of the cyt c structure in the PVS complex and in stabilization of the denatured state with the residual secondary structure. A comparison of the effects of small anions and polyanions demonstrates the importance of cooperativity among the anions in the destabilization of cyt c. Predictably, other hydrophilic flexible polyanions such as heparin, polyglutamate, and polyadenylate also have a destabilizing effect on the structure of cyt c. However, a correlation between the properties of the polyanions and their effect on the protein stability is still unclear.  相似文献   

2.
    
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   

3.
    
The effect of pressure on the unfolding of bovine alpha-lactalbumin was investigated by ultraviolet absorption methods. The change of molar volume associated with unfolding, deltaV, was measured in the presence or absence of guanidine hydrochloride at pH 7. The deltaV was estimated to be -63 cm3/mol in the absence of a chemical denaturant. While in the presence of guanidine hydrochloride (GuHCl), it was found that deltaV was -66 cm3/mol at 25 degrees C and was independent of the concentration of GuHCl, despite the fact that the molten globule fraction in the total unfolding product decreased with the increase of GuHCl concentration. The results indicate that the volume of alpha-lactalbumin only changes at the transition from a native to a molten globule state, and almost no volume change has been found during the transition from a molten globule to the unfolded state.  相似文献   

4.
    
Xu Q  Keiderling TA 《Proteins》2006,63(3):571-580
Interactions of sodium dodecyl sulfate (SDS) at submicellar and micellar concentration, with the globular protein, horse heart cytochrome c, at low pH have been shown to stabilize two molten globule-like intermediates. These dynamic studies were performed using far-UV, near-UV, and Soret-band circular dichroism (CD) as well as fluorescence methods. Stopped-flow CD and fluorescence studies of acid-denatured cytochrome c refolding with SDS were performed at both submicellar and micellar concentrations. Distinctive refolding mechanisms (from analysis of both CD and fluorescence) were found under these two conditions, and an obvious refolding intermediate was evident in the fluorescence traces. In addition, stopped-flow CD in the Soret region showed multistep kinetics, suggesting that the spectral changes in this region are not only solvent effect related but also connected with the change of secondary structure. A possible folding mechanism is proposed to rationalize the kinetics results.  相似文献   

5.
    
We have used the homonuclear Overhauser effect (NOE) to characterize a model protein: carbonic anhydrase B. We have obtained NOE difference spectra for this protein, centering the on-resonance signals either at the methyl-proton or at the water-proton signals. The spin-diffusion spectra obtained as a function of protein concentration and temperature provide direct evidence of much greater protein-water interaction in the molten-globule state than in the native and denatured states. Furthermore, although the protein loses its gross tertiary structure in both the molten-globule and denatured states, it remains almost as compact in its molten-globule state as it is in the native state. The spin-diffusion spectra, obtained as a function of a variable delay time after the saturation pulse, allowed us to measure the relaxation times of several types of proton in the solution. These spectra contain enough information to distinguish between those water molecules solvating the protein and the free ones present as bulk water.  相似文献   

6.
    
Multihaem cytochromes play a key role in electron‐transport reactions in the periplasm of sulfate‐ and sulfur‐reducing bacteria. The redox proteins grouped in the c3 superfamily also display metal‐reducing activities, which make them interesting biotechnological tools. The crystal structure of the fully oxidized cytochrome c7 from Desulfuromonas acetoxidans has been solved by combined molecular‐replacement and MAD methods. The structure has been refined at 1.9 Å resolution to an R value of 19.1% (Rfree = 24.3%) and includes three haems and 116 water molecules. The protein displays the cytochrome c3 fold in a highly minimized form, while haem 2 and the surrounding protein environment are missing. The geometry of haem packing and of the haem axial ligands and propionates are described and compared with that of c3 cytochromes. The crystal structure is compared with the solution structure recently obtained by NMR methods and with its homologue cytochromes of the c3 superfamily. Comparison of the high number of available structures makes it possible to analyze the structural role of the few highly conserved residues, in addition to the cysteines and histidines that link the porphyrin rings and the Fe atoms to the protein chain.  相似文献   

7.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   

8.
Thermally induced transition curves of hen egg-white lysozyme were measured in the presence of several concentrations of dextran at pH 2.0 by near-UV and far-UV CD. The transition curves were fitted to a two-state model by a non-linear, least-squares method to obtain the transition temperature (T(m)), enthalpy change (deltaH(u)(T(m))), and free energy change (deltaG(u)(T)) of the unfolding transition. An increase in T(m) and almost constant deltaH(u)(T(m)) values were observed in the presence of added dextran at concentrations exceeding ca 100 g l(-1). In addition, dextran-induced conformational changes of fully unfolded protein were investigated by CD spectroscopy. Addition of high concentrations of dextran to solutions of acid-unfolded cytochrome c at pH 2.0 results in a shift of the CD spectrum from that characteristic of the fully unfolded polypeptide to that characteristic of the more compact, salt-induced molten globule state, a result suggesting that the molten globule-like state is stabilized relative to the fully unfolded form in crowded environments. Both observations are in qualitative accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.  相似文献   

9.
    
  相似文献   

10.
    
The singular value decomposition (SVD) analysis was applied to a large set of far-ultraviolet circular dichroism (far-UV CD) spectra (100-400 spectra) of horse heart cytochrome c (cyt c). The spectra were collected at pH 1.7-5.0 in (NH4)2SO4, sorbitol and 2,2,2-trifluoroethanol (TFE) solutions. The present purpose is to develop a rigorous matrix method applied to far-UV CD spectra to resolve in details conformational properties of proteins in the non-native (or denatured) regions. The analysis established that three basis spectral components are contained in a data set of difference spectra (referred to the spectrum of the native state) used here. By a further matrix transformation, any observed spectrum could be decomposed into fractions of the native (N), the molten-globule (MG), the highly denatured (D), and the alcohol-induced helical (H) spectral forms. This method could determine fractional transition curves of each conformer as a function of solution conditions, which gave the results consistent with denaturation curves of cyt c monitored by other spectroscopic methods. The results in sorbitol solutions, for example, suggested that the preferential hydration effect of the co-solvent stabilizes the MG conformer of cyt c. This report has found that the systematic SVD analysis of the far-UV CD spectra is a powerful tool for the conformational analysis of the non-native species of a protein when it is suitably supplemented with other experimental methods.  相似文献   

11.
The study of protein folding and unfolding pathways lends a fascinating dimension to protein biochemistry. Several models for protein folding have been postulated. Two powerful probes used in protein folding study are far UV-CD monitored stopped flow kinetics and pulse hydrogen exchange in conjunction with NMR. The formation of molten globule, which is an intermediate possessing secondary structure but not a well packed tertiary structure, is now emerging as a common feature on the folding pathway of many proteins. The molten globule is recognized by a class of molecules called chaperones which act as accelerators of protein folding. This article ends by elucidating why proteins are Nature's choice as catalysts.  相似文献   

12.
Botulinum neurotoxins (BoNTs), the most poisonous member of class A biothreat agent, cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. In its mechanism of action, the catalytic domain (light chain (LC) of BoNT) is transported to the cytosol by the heavy chain (HC) in order to reach its proteolytic substrates. The BoNT HC forms a membrane channel under acidic conditions encountered in endosomes to serve as a passageway for LC to enter into cytosol. We demonstrate here that BoNT/A LC undergoes unique structural changes under the low pH conditions, and adopts a molten globule state, exposing substantial number of hydrophobic groups. The flexibility of the molten globular structure combined with retention of the secondary structure and exposure of specific residues of LC for interaction with the HC, allows its translocation through the narrow endosomal membrane channel.  相似文献   

13.
    
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.  相似文献   

14.
    
Theoretical, statistical, and model studies suggest that proteins are stabilized by weakly polar attractions between sulfur atoms and properly oriented aromatic rings. The two sulfur-containing amino acids, methionine and cysteine, occur frequently among functional alleles in random mutant libraries of Saccharomyces cerevisiae iso-1-cytochrome c genes at positions that form a weakly polar aromatic-aromatic interaction, the wild-type protein. To determine if a weakly polar sulfur-aromatic interaction replaced the aromatic-aromatic interaction, the structure and stability of two variants were examined. Phenylalanine 10, which interacts with tyrosine 97, was replaced by methionine and cysteine. The cysteine was modified to form the methionine and cysteine analog, S-methyl cysteine (CysSMe). Proton NMR studies indicate that changing Phe 10 to Met or CysSMe affects only local structure and that the structures of sulfur-containing variants are nearly identical. Analysis of chemical shifts and nuclear Overhauser effect data indicates that both sulfur-containing side chains are in position to form a weakly polar interaction with Tyr 97. The F10M and F10CSMe variants are 2-3 kcal mol-1 less stable than iso-1-cytochrome c at 300 K. Comparison of the stabilities of the F10M and F10CSMe variants allows evaluation of the potential weakly polar interaction between the additional sulfur atom of F10CSMe and the aromatic moiety of Tyr 97. The F10CSMe;C102T variant is 0.7 +/- 0.3 kcal mol-1 more stable than the F10M;C102T protein. The increased stability is explained by the difference in hydrophobicity of the sulfur-containing side chains. We conclude that any weakly polar interaction between the additional sulfur and the aromatic ring is too weak to detect or is masked by destabilizing contributions to the free energy of denaturation.  相似文献   

15.
Classical protein folding invokes a cooperative transition between distinct thermodynamic states that are individually populated at equilibrium and separated by an energy barrier. It has been proposed, however, that the small protein, BBL, undergoes one-step downhill folding whereby it folds non-cooperatively to its native state without encountering an appreciable energy barrier. Only a single conformational ensemble is populated under given conditions, and so the denatured state ensemble progressively changes into the native structure. A wide dispersion of thermal denaturation midpoints that was observed for an extrinsically labelled fragment of BBL is proposed to be evidence for its one-state, downhill folding, a phenomenon that is also suggested to be functionally important for BBL and its homologues. We found, however, that thermal denaturation of unlabelled wild-type BBL was highly cooperative, with very similar transition midpoints for the melting of secondary and tertiary interactions, as well as for individual residues when monitored by NMR. Similar results were also observed for two other homologues, E3BD and POB. Further, the extrinsic fluorophores perturbed the unfolding energetics of labelled BBL, and complicated its equilibrium behaviour. One-step downhill folding may well occur for some proteins that do not have distinct folded states but not for BBL and its well-folded homologues.  相似文献   

16.
    
Capillary dilatometry enables direct measurement of changes in volume, an extensive thermodynamic property. The results provide insight into the changes in hydration that occur upon protein folding, ligand binding, and the interactions of proteins with nucleic acids and other cellular components. Often the entropy change arising from release of hydrating solvent provides the main driving force of a binding reaction. For technical reasons, though, capillary dilatometry has not been as widely used in protein biochemistry and biophysics as other methods such as calorimetry. Described here are simple apparatus and simple methods, which bring the technique within the capacity of any laboratory. Even very simple results are shown to have implications for macromolecular‐based phenomena. Protein examples are described.  相似文献   

17.
D N Brems  H A Havel 《Proteins》1989,5(1):93-95
Previous results from equilibrium and kinetic studies of the folding of bovine growth hormone (bGH) have demonstrated that bGH does not follow a simple two-step folding mechanism. These results are summarized and interpreted according to the "molten globule" model. The molten globule state of bGH is characterized as a folding intermediate which is largely alpha-helical, retains a compact hydrodynamic radius, has packing of the aromatic side chains that is similar to the unfolded state, and possesses a solvent-exposed hydrophobic surface along helix 106-127 that readily leads to association.  相似文献   

18.
    
Protein classifications show that the Rossmann fold, which consists of two betaalphabetaalphabeta motifs (BABAB) related by a rough twofold axis, is the most populated alphabeta fold, and that the betaalphabeta submotif (BAB) is a widespread elementary structural arrangement. Herein, we report MD simulations, circular dichroism and NMR analyses on BAB and BABAB from porcine lactate dehydrogenase to evaluate their intrinsic stability. Our results demonstrate that BAB is not stable in solution and is not a folding nucleus. We also find that BABAB, despite its appearance of a functional and structural unit, is not an independent and thermodynamically stable folding unit. Rather, we show that BABAB retains most native secondary structure but very little tertiary structure, thus displaying characteristics of a molten globule.  相似文献   

19.
    
An increasing body of evidence ascribes to misfolded forms of cytochrome c (cyt c) a role in pathophysiological events such as apoptosis and disease. Here, we examine the conformational changes induced by lipid binding to horse heart cyt c at pH 7 and study the ability of ATP (and other nucleotides) to refold several forms of unfolded cyt c such as oleic acid-bound cyt c, nicked cyt c, and acid denatured cyt c. The CD and fluorescence spectra demonstrate that cyt c unfolded by oleic acid has an intact secondary structure, and a disrupted tertiary structure and heme environment. Furthermore, evidence from the Soret CD, electronic absorption, and resonance Raman spectra indicates the presence of an equilibrium of at least two low-spin species having distinct heme-iron(III) coordination. As a whole, the data indicate that binding of cyt c to oleic acid leads to a partially unfolded conformation of the protein, resembling that typical of the molten globule state. Interestingly, the native conformation is almost fully recovered in the presence of ATP or dATP, while other nucleotides, such as GTP, are ineffective. Molecular modeling of ATP binding to cyt c and mutagenesis experiments show the interactions of phosphate groups with Lys88 and Arg91, with adenosine ring interaction with Glu62 explaining the unfavorable binding of GTP. The finding that ATP and dATP are unique among the nucleotides in being able to turn non-native states of cyt c back to native conformation is discussed in the light of cyt c involvement in cell apoptosis.  相似文献   

20.
  总被引:1,自引:0,他引:1  
Murayama K  Ozaki Y 《Biopolymers》2002,67(6):394-405
The molten globule-like states of ovalbumin (OVA) in acid aqueous solutions are investigated by generalized two-dimensional (2D) Fourier transform near-IR (FT-NIR) correlation spectroscopy. This new method allows us to explore the changes in hydration and the secondary structure simultaneously. FT-NIR spectra are measured for OVA aqueous solutions with concentrations of 1, 2, 3, 4, and 5 wt % over a pH range of 2.4-5.4. Concentration-perturbed 2D correlation spectra are calculated for the spectra in the 4850-4200 and 7500-5350 cm(-1) regions at different pH values. The 2D NIR synchronous spectrum in the 4850-4200 cm(-1) region shows a significant change upon going from pH 5.4 to 3.6. An autopeak at 4265 cm(-1) that is due to a combination of a symmetric CH(2) stretching mode and a CH(2) bending mode of side chains seen at pH 5.0 disappears completely in the synchronous spectrum at pH 3.6. This suggests that some amino acid residues of OVA are subjected to microenvironmental changes with decreasing pH. More remarkable changes are observed in the synchronous spectra at pHs below 2.8. A band near 4600 cm(-1) arising from a combination of amide B and amide II modes (amide B/II) shifts downward with considerable broadening between pH 3.0 and 2.4, suggesting that the strength of the hydrogen bonds of amide groups of OVA changes significantly. The synchronous and asynchronous spectra in the 4850-4200 cm(-1) region show that the intensities of the bands attributable to amide groups and side chains of OVA and that of the band near 4800 cm(-1) arising from water change in phase with the increase in the concentration above pH 2.8, but they vary out of phase below pH 2.8. The 2D synchronous map in the 7500-5350 cm(-1) region also shows marked changes upon going from pH 2.8 to 2.6. A broad autopeak at around 6950 cm(-1) assigned to free water and bound water with weak hydrogen bonds becomes very weak in the synchronous spectrum at pH 2.6, while broad autopeaks around 6450 cm(-1) suddenly appear that are due to bound water with several hydrogen bonds and the first overtone of an NH stretching mode of the amide groups of OVA. Therefore, it is very likely that protein hydration and the hydrogen bonds of amide groups change simultaneously in a narrow pH region of 2.8-2.6. It is probably that below pH 2.6 the protein assumes a molten globule-like state in which the whole molecule is very flexible, and side chains (but not the backbone chain) fluctuate significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号