首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enthalpy change accompanying the reversible acid-induced transition from the native (N) to the molten-globule (MG) state of bovine cytochrome c was directly evaluated by isothermal acid-titration calorimetry (IATC), a new method for evaluating the pH dependence of protein enthalpy. The enthalpy change was 30 kJ/mol at 30 degrees C, pH 3.54, with 500 mM KCl. The results of the global analysis of the temperature dependence of the excess enthalpy from 20 to 35 degrees C demonstrated that the N to MG transition is a two-state transition with a small heat capacity change of 1.1 kJ K(-1) mol(-1). The present findings were also indicative of the pH dependence of the enthalpy and the heat capacity of the MG state, -13 kJ mol(-1) pH(-1) and -1.0 kJ K(-1) mol(-1) pH(-1), respectively, at 30 degrees C within a pH range from 2 to 3.  相似文献   

2.
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.  相似文献   

3.
The performance of a mesophilic two-stage system generating hydrogen and methane continuously from sucrose (10-30 g/L) was investigated. A hydrogen-generating CSTR followed by an upflow anaerobic filter were both inoculated with anaerobically digested sewage sludge, and ORP, pH, gas output, %H(2), %CH(4) and %CO(2) monitored. pH was controlled with NaOH, KOH or Ca(OH)(2). Using NaOH as alkali with 10 g/L sucrose, yields of 1.62 +/- 0.2 mol H(2)/mol hexose added and 323 mL CH(4)/gCOD added to the hydrogen and methane reactors respectively were achieved. The overall chemical oxygen demand (COD) reduction was 92.6% with 0.90 +/- 0.1 g/L sodium and 316 +/- 40 mg/L residual acetate in the methane reactor. Operation at 20 g/L sucrose and NaOH as alkali led to impaired volatile fatty acid (VFA) degradation in the methane reactor with 2.23 +/- 0.2 g/L sodium, 1,885 mg/L residual acetate, a hydrogen yield of 1.47 +/- 0.1 mol/mol hexose added, a methane yield of 294 mL/gCOD added and an overall COD reduction of 83%. Using Ca(OH)(2) as alkali with 20 g/L sucrose gave a hydrogen yield of 1.29 +/- 0.3 mol/mol hexose added, a methane yield of 337 mL/gCOD added and improved the overall COD reduction to 91% with residual acetate concentrations of 522 +/- 87 mg/L. Operation at 30 g/L sucrose with Ca(OH)(2) gave poorer overall COD reduction (68%), a hydrogen yield of 1.47 +/- 0.2 mol/mol hexose added, a methane yield of 138 mL/gCOD added and residual acetate 7,343 +/- 715 mg/L. It was shown that sodium toxicity and overloading are important issues for successful anaerobic digestion of effluent from biohydrogen reactors in high rate systems.  相似文献   

4.
The rate of exchange of the labile hydrogens of lysozyme was measured by out-exchange of tritium from the protein in solution and from powder samples of varied hydration level, for pH 2, 3, 5, 7, and 10 at 25 degrees C. The dependence of exchange of powder samples on the level of hydration was the same for all pHs. Exchange increased strongly with increased hydration until reaching a rate of exchange that is constant above 0.15 g of H2O/g of protein (120 mol of H2O/mol of protein). This hydration level corresponds to coverage of less than half the protein surface with a monolayer of water. No additional hydrogen exchange was observed for protein powders with higher water content. Considered in conjunction with other lysozyme hydration data [Rupley, J. A., Gratton, E., & Careri, G. (1983) Trends Biochem. Sci. (Pers. Ed.) 8, 18-22], this observation indicates that internal protein dynamics are not strongly coupled to surface properties. The use of powder samples offers control of water activity through regulation of water vapor pressure. The dependence of the exchange rate on water activity was about fourth order. The order was pH independent and was constant from 114 to 8 mol of hydrogen remaining unexchanged/mol of lysozyme. These results indicate that the rate-determining step for protein hydrogen exchange is similar for all backbone amides and involves few water molecules. Powder samples were hydrated either by isopiestic equilibration, with a half-time for hydration of about 1 h, or by addition of solvent to rapidly reach final hydration. Samples hydrated slowly by isopiestic equilibration exhibited more exchange than was observed for samples of the same water content that had been hydrated rapidly by solvent addition. This difference can be explained by salt and pH effects on the nearly dry protein. Such effects would be expected to contribute more strongly during the isopiestic equilibration process. Solution hydrogen exchange measurements made for comparison with the powder measurements are in good agreement with published data. Rank order was proven the same for all pHs by solution pH jump experiments. The effect of ionic strength on hydrogen exchange was examined at pH 2 and pH 5 for protein solutions containing up to 1.0 M added salt. The influence of ionic strength was similar for both pHs and was complex in that the rate increased, but not monotonically, with increased ionic strength.  相似文献   

5.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

6.
Thermal denaturation profiles for human plasma fibronectin under a variety of conditions have been determined. Although a single melting curve for this protein, with a thermal transition midpoint of 58.4 +/- 1.0 degree C and a calorimetric enthalpy change (delta Hc) of 1040 +/- 100 kcal/mol, is obtained in dilute neutral salt solutions, it is estimated that a total of seven to eight independent two-state thermal transitions are present in this endotherm. These values are not significantly altered by the presence of Ca2+, up to levels of at least 20 mM. Upon variation of the pH, no distinct thermal transitions are noted at values below pH 5.0 and above pH 10.0. Between pH 7.0 and 10.0, virtually no alterations in the thermotropic properties of fibronectin are observed, indicating that the individual domains of this protein, which contribute to the thermogram, are preserved in this pH range. Upon alteration of the ionic strength of the buffer, from 0.05 to 0.4 M KCl, small changes are observed in the thermal transition profiles of fibronectin, indicative of conformational changes in the protein resulting in a larger number of cooperative units undergoing the temperature-induced unfolding reaction.  相似文献   

7.
Nakamura S  Seki Y  Katoh E  Kidokoro S 《Biochemistry》2011,50(15):3116-3126
To understand the stabilization, folding, and functional mechanisms of proteins, it is very important to understand the structural and thermodynamic properties of the molten globule state. In this study, the global structure of the acid molten globule state, which we call MG1, of horse cytochrome c at low pH and high salt concentrations was evaluated by solution X-ray scattering (SXS), dynamic light scattering, and circular dichroism measurements. MG1 was globular and slightly (3%) larger than the native state, N. Calorimetric methods, such as differential scanning calorimetry and isothermal acid-titration calorimetry, were used to evaluate the thermodynamic parameters in the transitions of N to MG1 and MG1 to denatured state D of horse cytochrome c. The heat capacity change, ΔC(p), in the N-to-MG1 transition was determined to be 2.56 kJ K(-1) mol(-1), indicating the increase in the level of hydration in the MG1 state. Moreover, the intermediate state on the thermal N-to-D transition of horse cytochrome c at pH 4 under low-salt conditions showed the same structural and thermodynamic properties of the MG1 state in both SXS and calorimetric measurements. The Gibbs free energy changes (ΔG) for the N-to-MG1 and N-to-D transitions at 15 °C were 10.9 and 42.2 kJ mol(-1), respectively.  相似文献   

8.
The kinetics of cyanide binding to chloroperoxidase were studied using a high-pressure stopped-flow technique at 25 degrees C and pH 4.7 in a pressure range from 1 to 1000 bar. The activation volume change for the association reaction is delta V not equal to + = -2.5 +/- 0.5 ml/mol. The total reaction volume change, determined from the pressure dependence of the equilibrium constant, is delta V degrees = -17.8 +/- 1.3 ml/mol. The effect of temperature was studied at 1 bar yielding delta H not equal to + = 29 +/- 1 kJ/mol, delta S not equal to + = -58 +/- 4 J/mol per K. Equilibrium studies give delta H degrees = -41 +/- 3 kJ/mol and delta S degrees = -59 +/- 10 J/mol per K. Possible contributions to the binding process are discussed: changes in spin state, bond formation and conformation changes in the protein. An activation volume analog of the Hammond postulate is considered.  相似文献   

9.
The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.  相似文献   

10.
The two-domain structure of streptokinase (Sk) was demonstrated by scanning calorimetric investigations at neutral pH and low ionic strength. The melting pattern of the protein is composed of two two-state transitions at TtrS1 = 45.9 +/- 0.4 degrees C with delta H1 = 431 +/- 18 kJ/mol, and TtrS2 = 60.1 +/- 1.3 degrees C with delta H2 = 306 +/- 16 kJ/mol. The partial specific heat capacity of native Sk was determined to be Cp = 1.42 +/- 0.17 J/K/g and the denaturational heat capacity change associated with the two transitions, delta Cp1 = 0.21 J/K/g and delta Cp2 = 0.38 J/K/g, respectively. The overall melting pattern of Sk remains almost unchanged at a variety of tested solvent compositions, except at pH 4 (and below) and in the presence of denaturants. The two domains show different susceptibility to urea. It is proposed that the less thermostable domain is located within the N-terminal part (residues 1-230), and the more thermostable one, within the C-terminal region.  相似文献   

11.
Equilibrium constants for the binding of cyanate to the ferric heme c octapeptide in 50% ethylene glycol, 50% aqueous buffer were measured spectrophotometrically. Equilibrium constants measured at several temperatures from -20 degrees C to 0 degrees C exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta Ho = -1.3 X 10(3) +/- 0.9 X 10(3) J/mol (-3.1 X 10(2) +/- 2 X 10(2) cal/mol), delta So = -3 +/- 3 J/K X mol (-0.6 +/- 0.8 cal/K X mol). The equilibrium constant for cyanate binding at 25 degrees C and pH 7.4 is 1.21 which is approximately 2 to 3 orders of magnitude lower than that observed for cyanate binding to methemoglobin and metmyoglobin. Krel, the ratio of the hemoprotein to model heme octapeptide binding constants, for NCO- is smaller than Krel for N3- suggesting that hydrogen bonding between the terminal ligand atoms and the distal histidine in hemoglobin and myoglobin does not contribute to the increased protein ligand stabilization observed for these anions relative to the model. A donor-acceptor interaction between the distal histidine and the electrophilic middle atoms of these bound ligands is proposed.  相似文献   

12.
The free energies of dimer dissociation of the retroviral proteases (PRs) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) were determined by measuring the effects of denaturants on the protein fluorescence upon the unfolding of the enzymes. HIV-1 PR was more stable to denaturation by chaotropes and extremes of pH and temperature than SIV PR, indicating that the former enzyme has greater conformational stability. The urea unfolding curves of both proteases were sigmoidal and single phase. The midpoints of the transition curves increased with increasing protein concentrations. These data were best described by and fitted to a two-state model in which folded dimers were in equilibrium with unfolded monomers. This denaturation model conforms to cases in which protein unfolding and dimer dissociation are concomitant processes in which folded monomers do not exist [Bowie, J. U., & Sauer, R. T. (1989) Biochemistry 28, 7140-7143]. Accordingly, the free energies of unfolding reflect the stabilities of the protease dimers, which for HIV-1 PR and SIV PR were, respectively, delta GuH2O = 14 +/- 1 kcal/mol (Ku = 39 pM) and 13 +/- 1 kcal/mol (Ku = 180 pM). The binding of a tight-binding, competitive inhibitor greatly stabilized HIV-1 PR toward urea-induced unfolding (delta GuH2O = 19.3 +/- 0.7 kcal/mol, Ku = 7.0 fM). There were also profound effects caused by adverse pH on the protein conformation for both HIV-1 PR and SIV PR, resulting in unfolding at pH values above and below the respective optimal ranges of 4.0-8.0 and 4.0-7.0  相似文献   

13.
The dynamics of the enthalpy and volume changes produced in the photodissociation of carbon monoxide from sperm whale myoglobin is investigated by time-resolved photoacoustic calorimetry. The enthalpy and volume changes for the formation of the geminate pair, which occurs within 50 ns of photolysis, are delta H = -2.2 +/- 2.8 kcal/mol and delta V = -10.0 +/- 1.0 mL/mol relative to carboxymyoglobin. The enthalpy and volume changes associated with formation of deoxymyoglobin and solvated carbon monoxide, formed with a half-life of 702 +/- 31 ns at 20 degrees C, are delta H = 14.6 +/- 3.4 kcal/mol and delta V = 5.8 +/- 1.0 mL/mol relative to carboxymyoglobin.  相似文献   

14.
M Mougel  B Ehresmann  C Ehresmann 《Biochemistry》1986,25(10):2756-2765
A sensitive membrane filter assay has been used to examine the kinetic and equilibrium properties of the interactions between Escherichia coli ribosomal protein S8 and 16S rRNA. In standard conditions (0 degrees C, pH 7.5, 20 mM Mg2+, 0.35 M KCl) the apparent association constant is 5 +/- 0.5 X 10(-7) M-1. The interaction is highly specific, and the kinetics of the reaction are consistent with the apparent association constant. Nevertheless, the rate of association is somewhat slower than that expected for a diffusion-controlled reaction, suggesting some steric constraint. The association is only slightly affected by temperature (delta H = -1.8 kcal/mol). The entropy change [delta S = +29 cal/(mol K)] is clearly the main driving force for the reaction. The salt dependence of Ka reveals that five ions are released upon binding at pH 7.5 and in the presence of 10 mM magnesium. The substitution of various anions for Cl- has an appreciable effect on the magnitude of Ka, following the order CH3COO- greater than Cl- greater than Br-, thus indicating the existence of anion binding site(s) on S8. An equal number of ions were released when Cl- was replaced by CH3COO-, but the absence of anion release upon binding cannot be excluded. On the other hand, the free energy of binding appears not to be exclusively electrostatic in nature. The effect of pH on both temperature and ionic strength dependence of Ka has been examined. It appears that protonation of residue(s) (with pK congruent to 9) increases the affinity via a generalized charge effect. On the other hand, deprotonation of some residue(s) with a pK congruent to 5-6 seems to be required for binding. Furthermore, the unique cysteine present in S8 was shown to be essential for binding.  相似文献   

15.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

16.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

17.
Takano K  Tsuchimori K  Yamagata Y  Yutani K 《Biochemistry》2000,39(40):12375-12381
Salt bridges play important roles in the conformational stability of proteins. However, the effect of a surface salt bridge on the stability remains controversial even today; some reports have shown little contribution of a surface salt bridge to stability, whereas others have shown a favorable contribution. In this study, to elucidate the net contribution of a surface salt bridge to the conformational stability of a protein, systematic mutant human lysozymes, containing one Glu to Gln (E7Q) and five Asp to Asn mutations (D18N, D49N, D67N, D102N, and D120N) at residues where a salt bridge is formed near the surface in the wild-type structure, were examined. The thermodynamic parameters for denaturation between pH 2.0 and 4.8 were determined by use of a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. The denaturation Gibbs energy (DeltaG) of all mutant proteins was lower than that of the wild-type protein at pH 4, whereas there was little difference between them near pH 2. This is caused by the fact that the Glu and Asp residues are ionized at pH 4 but protonated at pH 2, indicating a favorable contribution of salt bridges to the wild-type structure at pH 4. Each contribution was not equivalent, but we found that the contributions correlate with the solvent inaccessibility of the salt bridges; the salt bridge contribution was small when 100% accessible, while it was about 9 kJ/mol if 100% inaccessible. This conclusion indicates how to reconcile a number of conflicting reports about role of surface salt bridges in protein stability. Furthermore, the effect of salts on surface salt bridges was also examined. In the presence of 0.2 M KCl, the stability at pH 4 decreased, and the differences in stability between the wild-type and mutant proteins were smaller than those in the absence of salts, indicating the compensation to the contribution of salt bridges with salts. Salt bridges with more than 50% accessibility did not contribute to the stability in the presence of 0.2 M KCl.  相似文献   

18.
Disappearance of Ca2+-induced phase separation in phosphatidylserine-phosphatidylcholine membrane has been studied under several conditions by monitoring electron spin resonance spectrum of spin-labeled phosphatidylcholine. The membranes were prepared in Millipore filters. Electron micrographs of the pre parations showed formation of multilayered structures lined on the pore surface. The phase separation was disappeared when the membrane was soaked in non-buffered salt solution (100 ml KCl, pH 5.5). It was markedly contrasting that when the bathing salt solution was buffered no disappearance was observed. Disappearance of the phase separation was also observed when the Ca2+-treated membrane was transferred to acidic salt solutions (less than or equal to pH 2.5) or to low ionic strength media (less than or equal to mM) buffered at pH 5.5, and then to the buffered salt solution (100 mM KCl, pH 5.5). These are due to replacement of Ca2+ by proton, proton-induced separation, followed by disappearance of the phase separation in the buffered salt solution. Biological significance of the competition between Ca2+ and proton for the phase separation or domain formation in the membranes was emphasized.  相似文献   

19.
The hypervalent muscle pigment ferrylmyoglobin, formed by activation of metmyoglobin by hydrogen peroxide, was found to be reduced in a second-order reaction by N-tert-butyl-alpha-phenylnitrone (PBN, often used as a spin trap). In acidic aqueous solution at ambient temperature, the reduction is relatively slow (deltaH++ = 65+/-2kJ x mol(-1) and deltaS++ = -54+/-7 J x mol(-1). K(-1) for pH = 5.6), but phase transitions during freezing of the buffered solutions accelerates the reaction between ferrylmyoglobin and PBN. In these heterogenous systems at low temperature (but not when ice-formation was inhibited by glycerol), a PBN-derived radical intermediate was detected by ESR-spectroscopy, identified as a nitroxyl radical by a parallel nitrogen hyperfine coupling constant of 31.8 G, and from microwave power saturation behavior concluded not to be located in the heme-cleft of the protein. The acceleration of the reaction is most likely caused by a lowering of the pH during the freezing of the buffered solutions whereby ferrylmyoglobin becomes more oxidizing.  相似文献   

20.
Microcalorimetric titrations of bullfrog (Rana catesbeiana) skeletal troponin C with Ca2+ were carried out in the absence of Mg2+ at 25 degrees C and at pH 7.0. The observed enthalpy titration curve was divided into three stages. The first stage of the titration (up to 2 mol of Ca2+/mol of protein) was characterized as an extremely exothermic process (delta H = -52 kJ/mol of site), the second one (titration from 2 to 3 mol of Ca2+/mol of protein) as a weakly endothermic process (delta H = +26 kJ/mol of site), and the final one (over 3 mol of Ca2+/mol of protein) as a moderately exothermic process (delta H = -35 kJ/mol of site). The endothermic process of Ca2+ binding to the third site (the second stage) has the same property as that of the Ca2+ binding to every site of calmodulin but is distinctly different from those of the calmodulin-trifluoperazine complex and parvalbumins. This may suggest that an endothermic nature of Ca2+ binding, the reaction being driven solely by entropy change, is characteristic of the regulatory reactions of Ca2+ binding proteins accompanying the interaction with other proteins. The third Ca2+ binding site of bullfrog troponin C is, therefore, possibly involved in the regulation of muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号