首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein composition of sarcoplasmic-reticulum vesicles, either unpurified or after fractionation on sucrose gradients, and with or without previous osmotic shock and sonication, was investigated by electrophoresis in acid polyacrylamide gels. The pattern of release of loosely bound proteins is discussed with respect to their localization in the interior of the vesicles.  相似文献   

2.
3.
Stress proteins (heat shock proteins [hsps]) serve a number of protective functions, including protection from apoptosis and acting as chaperones during protein biosynthesis. For example, hsp 27 has been defined as a chaperone for the G3 domain of aggrecan, while hsp 47 is the chaperone for type I collagen. Separate cytoprotective roles for hsp 27 and hsp 70 have been demonstrated. The aim of this study was to define the expression of hsps in osteoblastic and chondrocytic cells of the growing rat long bone in relationship to the immunohistochemical localization of aggrecan, type I collagen and the presence of fragmented DNA that defines apoptotic events. Tibiae were harvested from Fisher 344 rats (n=6) and fixed in 10% buffered formalin. Samples were decalcified in 10% EDTA, bisected, and processed for histologic examination. Sections (5 mm) were immunohistochemically stained using a streptavidin-biotin detection method. Co-localization of hsps with apoptosis was achieved using the TUNEL procedure. In the rat tibia growth plate, aggrecan was generally distributed throughout cartilage and chondrocytes. However, hsp 27 expression was observed only in the lower hypertrophic chondrocytes. hsp27 was present in osteoblasts lining newly formed bone. hsp 47 staining was also prominent within these osteoblasts where collagen type I immunolocalization occurred. The inducible form of hsp 70 was localized to the osteoblastic cells lining new bone in the primary spongiosa. In cartilage, DNA fragmentation was restricted to the hypertrophic, hsp27-positive, chondrocytes. In contrast, DNA fragmentation was not co-localized with hsp27-positive osteoblastic cells of the primary spongiosa, although occasional apoptotic cells were identified. These results indicate that apoptosis is a mechanism by which hypertrophic chondrocytes are eliminated from cartilage prior to calcification, but that other mechanisms are also likely to be involved. They also suggest that hsps have cytoprotective and biosynthetic functions within osteoblasts and chondrocytes, but apoptotic signals may override these effects in some instances, resulting in apoptosis.  相似文献   

4.
Three groups of proteins can be clearly discriminated in the total protein of L cell polysomes by selective labelling in the presence of low doses of actinomycin D and two-dimensional polyacrylamide/dodecylsulfate gel electrophoresis followed by autoradiography: (a) structural ribosomal proteins which are not labelled in the presence of actinomycin D and form stained non-radioactive spot in gels; (b) exchangeable ribosomal proteins which are labelled in the presence of actinomycin D and stained radioactive spots; (c) non-ribosomal proteins which are detectable only by autoradiography of gels. The large and small subunits of L cell ribosomes contain respectively 45 and 34 ribosomal proteins with molecular weights less than or equal to 50 000; seven of the large subunit proteins and nine of the small subunit proteins are exchangeable. Most of the non-ribosomal proteins migrate in the region of the related to the separation of the ribosomal proteins of mammalian cells and the possible significance of the presence of non-ribosomal proteins in polysomes are discussed.  相似文献   

5.
6.
Nuclear proteins which are extractible with 0. 35 M NaCl and the nonhistone chromosomal proteins which are not soluble at this salt concentration separate on analytical polyacrylamide gel electrophoresis into the same 11 main fractions. Only one fraction (less than 7% of the total proteins) is specific for the nonhistone chromosomal proteins and is not found among the proteins soluble in 0. 35 M NaCl.  相似文献   

7.
8.
9.
10.
Biochemical properties of the heat shock or stress proteins of mammalian cells have been investigated using two-dimensional gel electrophoresis and immunological techniques. Of the major mammalian stress proteins (Mr = 72,000, 73,000, and 90,000) and minor stress proteins (Mr = 80,000, 100,000, and 110,000), the 80- and 90-kDa proteins were found to be phosphoproteins in all cell types examined. The 100-kDa protein was found to incorporate phosphate in only some cell types examined. In studies of the metabolic incorporation of mannose into the stress proteins, only the 100-kDa protein was found to be a glycoprotein. Two of the stress proteins, the 80- and 100-kDa species, were found to be identical with the proteins induced in cells grown in the absence of glucose (i.e. the "glucose-regulated proteins"). These same two proteins also were induced in cells treated with the calcium ionophore A23187. To begin examining the intracellular location of these multiregulated proteins, immunofluorescence microscopy studies were carried out using a monoclonal antibody against the 100-kDa stress protein. The antigen was localized primarily with the Golgi apparatus and less prominently with the plasma membrane and nucleus. Heat shock treatment resulted in an increased number of the cells exhibiting a nuclear location of 100 kDa.  相似文献   

11.
12.
We have analyzed and compared the influence of cation-pi interactions in glycoproteins (GPs), lipid-binding proteins (LBPs) and RNA-binding proteins (RBPs) in this study. We observed that all the proteins included in the study had profound cation-pi interactions. There is an average of one energetically significant cation-pi interaction for every 71 residues in GPs, for every 58 residues in LBPs and for every 64 residues in RBPs. Long-range contacts are predominant in all the three types of proteins studied. The pair-wise cation-pi interaction energy between the positively charged and aromatic residues shows that Arg-Trp pair energy was the strongest among all six possible pairs in all the three types of proteins studied. There were considerable differences in the preference of cation-pi interacting residues to different secondary structure elements and ASA and these might contribute to differences in biochemical functions of GPs, LBPs and RBPs. It was interesting to note that all the five residues involved in cation-pi interactions were found to have stabilization centers in GPs, LBPs and RBPs. Majority of the cation-pi interacting residues investigated in the present study had a conservation score of 6, the cutoff value used to identify the stabilizing residues. A small percentage of cation-pi interacting residues were also present as stabilizing residues. The cation-pi interaction-forming residues play an important role in the structural stability of in GPs, LBPs and RBPs. The results obtained in this study will be helpful in further understanding the stability, specificity and differences in the biochemical functions of GPs, LBPs and RBPs.  相似文献   

13.
14.
Determining the atomic resolution structures of membrane proteins is of particular interest in contemporary structural biology. Helical membrane proteins constitute one-third of the expressed proteins encoded in a genome, many drugs have membrane-bound proteins as their receptors, and mutations in membrane proteins result in human diseases. Although integral membrane proteins provide daunting technical challenges for all methods of protein structure determination, nuclear magnetic resonance (NMR) spectroscopy can be an extremely versatile and powerful method for determining their structures and characterizing their dynamics, in lipid environments that closely mimic the cell membranes. Once milligram amounts of isotopically labeled protein are expressed and purified, micelle samples can be prepared for solution NMR analysis, and lipid bilayer samples can be prepared for solid-state NMR analysis. The two approaches are complementary and can provide detailed structural and dynamic information. This paper describes the steps for membrane protein structure determination using solution and solid-state NMR. The methods for protein expression and purification, sample preparation and NMR experiments are described and illustrated with examples from the FXYD proteins, a family of regulatory subunits of the Na,K-ATPase.  相似文献   

15.
Clustering of membrane proteins plays an important role in many cellular activities such as protein sorting and signal transduction. In this study, we used dissipative particle dynamics simulation method to investigate the clustering of anchored membrane proteins (AMPs) in the presence of transmembrane proteins (TMPs). First, our simulation results show that clustering of AMPs and that of TMPs are in fact interdependent, and depending on their hydrophobic length, both protein mixing and protein demixing are observed. Especially, the protein demixing occurs only when the hydrophobic mismatch of TMPs is negative while that of AMPs is positive. Second, our simulation results indicate that the clustering of TMPs also modulates the coupling of the clustering of AMPs in both leaflets. On the one hand, the coupling between AMPs in different leaflets will be strongly restrained if TMPs form protein mixing with AMPs in one leaflet and protein demixing with AMPs in the other leaflet. On the other hand, the coupling between AMPs can be enhanced or mediated by TMPs when TMPs mix with AMPs in both leaflets. Our results may have some implications on our understanding of how different types of membrane proteins cluster and provide a possible explanation of how TMPs participate in signal transduction across cellular membranes.  相似文献   

16.
TSG101 and ALIX both function in HIV budding and in vesicle formation at the multivesicular body (MVB), where they interact with other Endosomal Sorting Complex Required for Transport (ESCRT) pathway factors required for release of viruses and vesicles. Proteomic analyses revealed that ALIX and TSG101/ESCRT-I also bind a series of proteins involved in cytokinesis, including CEP55, CD2AP, ROCK1, and IQGAP1. ALIX and TSG101 concentrate at centrosomes and are then recruited to the midbodies of dividing cells through direct interactions between the central CEP55 'hinge' region and GPP-based motifs within TSG101 and ALIX. ESCRT-III and VPS4 proteins are also recruited, indicating that much of the ESCRT pathway localizes to the midbody. Depletion of ALIX and TSG101/ESCRT-I inhibits the abscission step of HeLa cell cytokinesis, as does VPS4 overexpression, confirming a requirement for these proteins in cell division. Furthermore, ALIX point mutants that block CEP55 and CHMP4/ESCRT-III binding also inhibit abscission, indicating that both interactions are essential. These experiments suggest that the ESCRT pathway may be recruited to facilitate analogous membrane fission events during HIV budding, MVB vesicle formation, and the abscission stage of cytokinesis.  相似文献   

17.
18.
A unique abundant protein, designated P by analogy to the putative polymerase proteins of other paramyxoviruses, was identified in purified Newcastle disease virus. Under nonreducing conditions the P proteins could be separated from other viral proteins on sodium dodecyl sulfate-polyacrylamide gels. The P proteins were isolated from detergent-solubilized virions as 53,000- to 55,000-dalton monomers and disulfide-linked trimers. Distinct forms of P having four different isoelectric points and two different electrophoretic mobilities were resolved by two-dimensional electrophoresis. Two forms of P were phosphorylated, as were the nucleocapsid protein and non-glycosylated membrane protein. In addition to disulfide-linked forms of P, dimers of the hemagglutinin-neuraminidase glycoprotein and two disulfide-linked versions of the fusion glycoprotein were identified. Several electrophoretic variants of the nucleocapsid protein that were probably created by intrachain disulfide bonding were also isolated from virions under nonreducing conditions. The locations of the newly identified proteins were determined by detergent-salt fractionation of virions and by surface-selective radioiodination of the viral envelope. The P proteins were associated with nucleocapsids and were not detected at the surface of virions. Both forms of the fusion glycoproteins were on the exterior of the viral envelope. Herein the properties of the P proteins are compared with similar proteins of rhabdoviruses and other paramyxoviruses, and a role for multiple forms of proteins in the genetic economy of newcastle disease virus is discussed.  相似文献   

19.
20.
Amino acid composition and electrophoretic mobility suggest that two polymorphic proteins in human parotid saliva, Pm and PmS, are basic proline-rich proteins. Comparison of two basic proline-rich proteins previously isolated by D. L. Kauffman and P. J. Keller (1979) [Arch. Oral. Biol. 24: 249], IB-6 and IB-9, with PmS and Pm demonstrated corresponding electrophoretic mobilities on cationic polyacrylamide slab gels. Further, the amino acid compositions of IB-9 and Pm were found to be similar. Although differences in amino acid composition and carbohydrate content were noted, such differences could be accounted for, suggesting that IB-9 and Pm are identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号