首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life cycle assessment (LCA) is one of the most popular methods of technical‐environmental assessment for informing environmental policies, as, for instance, in municipal solid waste (MSW) management. Because MSW management involves many stakeholders with possibly conflicting interests, the implementation of an LCA‐based policy can, however, be blocked or delayed. A stakeholder assessment of future scenarios helps identify conflicting interests and anticipate barriers of sustainable MSW management systems. This article presents such an approach for Swiss waste glass‐packaging disposal, currently undergoing a policy review. In an online survey, stakeholders (N = 85) were asked to assess disposal scenarios showing different LCA‐based eco‐efficiencies with respect to their desirability and probability of occurrence. Scenarios with higher eco‐efficiency than the current system are more desirable and considered more probable than those with lower eco‐efficiency. A combination of inland recycling and downcycling to foam glass (insulation material) in Switzerland is desired by all stakeholders and is more eco‐efficient than the current system. In contrast, institutions of MSW management, such as national and regional environmental protection agencies, judge a scenario in which nearly all cullet would be recycled in the only Swiss glass‐packaging factory as more desirable than supply and demand stakeholders of waste glass‐packaging. Such a scenario involves a monopsony rejected by many municipalities and scrap traders. Such an assessment procedure can provide vital information guiding the formulation of environmental policies.  相似文献   

2.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

3.
Plastic recycling is promoted in the transition toward a circular economy and a closed plastic loop, typically using mass‐based recycling targets. Plastic from household waste (HHW) is contaminated and heterogeneous, and recycled plastic from HHW often has a limited application range, due to reduced quality. To correctly assess the ability to close plastic loops via recycling, both plastic quantities and qualities need to be evaluated. This study defines a circularity potential representing the ability of a recovery system to close material loops assuming steady‐state market conditions. Based on an average plastic waste composition including impurities, 84 recovery scenarios representing a wide range of sorting schemes, source‐separation efficiencies, and material recovery facility (MRF) configurations and performances were assessed. The qualities of the recovered fractions were assessed based on contamination and the circularity potential calculated for each scenario in a European context. Across all scenarios, 17% to 100% of the generated plastic mass could be recovered, with higher source‐separation and MRF efficiencies leading to higher recovery. Including quality, however, at best 55% of the generated plastic was suitable for recycling due to contamination. Source‐separation, a high number of target fractions, and efficient MRF recovery were found to be critical. The circularity potential illustrated that less than 42% of the plastic loop can be closed with current technology and raw material demands. Hence, Europe is still far from able to close the plastic loop. When transitioning toward a circular economy, the focus should be on limiting impurities and losses through product design, technology improvement, and more targeted plastic waste management.  相似文献   

4.
Supply chains pooling is an emergent strategy for improving logistical performance. The pooling concept consists in transferring the effort of coordination for consolidating independent operators’ flows towards an ad hoc pooled system. This organisation results from a design of a pooled logistics network by merging different supply chains to share transport and logistics resources in order to improve logistics performance. In this case study, the pooling concept is applied to a collection of small and medium-sized western France food suppliers serving the same retail chain. In order to demonstrate the efficiency of the pooling, the existing transport organisation was compared to various pooling scenarios. The methodology consisted in accessing a current situation through a survey of the flow of goods at one of the main distribution centre of the studied supply network, then comparing this situation with three other pooling scenarios. Using supply network optimisation models, these scenarios were assessed considering cost and CO2 emission levels. This study demonstrates the interest of transport pooling in the case independent shipping networks of Small and Medium Enterprises compared to the partially know existing strategies adopted by logistics service providers for less than truckload shipments. Moreover, it suggests that there is no dominant supply organisation and that transport pooling is a new stimulus for network design. These results also bring new research perspectives for generalisation of pooling and gain sharing within large coalitions.  相似文献   

5.

Purpose

In Portugal, the management of end-of-life vehicles (ELV) is set out in targets of the European Union policy for the year 2015, including 85 % recycling, 95 % recovery, and maximum of 5 % landfilling. These goals will be attained only through more efficient technologies for waste separation and recycling of shredder residues or higher rates of dismantling components. Focusing on this last alternative, a field experiment was carried out. There is potential for additional recycling/recovery of 10 %.

Methods

Three scenarios were proposed for the management of ELV wastes: (1) scenario 1 corresponds to the baseline and refers to the current management, i.e., the 10 % of ELV wastes are shredded whereby some ferrous and non-ferrous metals are recovered and the remaining fraction, called automotive shredder residues (ASR), is landfilled, (2) scenario 2 wherein the ASR fraction is incinerated with energy recovery, and (3) scenario 3 includes the additional dismantling of components for recycling and for energy recovery through solid recovered fuel, to be used as a fuel substitute in the cement industry. The environmental performance of these scenarios was quantified by using the life cycle assessment methodology. Five impact categories were assessed: abiotic resource depletion, climate change, photochemical oxidant creation, acidification, and eutrophication.

Results and discussion

Compared to the other scenarios, in scenario 1 no benefits for the impact categories of climate change and eutrophication were observed. Scenario 2 has environmental credits due to the recycling of ferrous and non-ferrous metals and benefits from energy recovery. However, this scenario has a significant impact on climate change due to emissions from thermal oxidation of polymeric materials present in the ASR fraction. A net environmental performance upgrading seems to be ensured by scenario 3, mainly due to replacing fossil fuel by solid recovered fuel.

Conclusions

The proposed additional dismantling of ELV (scenario 3) not only brings environmental benefits but also meets the European recovery and recycling targets. The associated increase of dismantling costs can be compensated by the additional recycling material revenues as well as social benefits by a rise in employment.  相似文献   

6.
Background This article describes two projects conducted recently by Sound Resource Management (SRMG) – one for the San Luis Obispo County Integrated Waste Management Authority (SLO IWMA) and the other for the Washington State Department of Ecology (WA Ecology). For both projects we used life cycle assessment (LCA) techniques to evaluate the environmental burdens associated with collection and management of municipal solid waste. Both projects compared environmental burdens from curbside collection for recycling, processing, and market shipment of recyclable materials picked up from households and/or businesses against environmental burdens from curbside collection and disposal of mixed solid waste. Method logy. The SLO IWMA project compared curbside recycling for households and businesses against curbside collection of mixed refuse for deposition in a landfill where landfill gas is collected and used for energy generation. The WA Ecology project compared residential curbside recycling in three regions of Washington State against the collection and deposition of those same materials in landfills where landfill gas is collected and flared. In the fourth Washington region (the urban east encompassing Spokane) the WA Ecology project compared curbside recycling against collection and deposition in a wasteto- energy (WTE) combustion facility used to generate electricity for sale on the regional energy grid. During the time period covered by the SLO study, households and businesses used either one or two containers, depending on the collection company, to separate and set out materials for recycling in San Luis Obispo County. During the time of the WA study households used either two or three containers for the residential curbside recycling programs surveyed for that study. Typically participants in collection programs requiring separation of materials into more than one container used one of the containers to separate at least glass bottles and jars from other recyclable materials. For the WA Ecology project SRMG used life cycle inventory (LCI) techniques to estimate atmospheric emissions of ten pollutants, waterborne emissions of seventeen pollutants, and emissions of industrial solid waste, as well as total energy consumption, associated with curbside recycling and disposal methods for managing municipal solid waste. Emissions estimates came from the Decision Support Tool (DST) developed for assessing the cost and environmental burdens of integrated solid waste management strategies by North Carolina State University (NCSU) in conjunction with Research Triangle Institute (RTI) and the US Environmental Protection Agency (US EPA)1. RTI used the DST to estimate environmental emissions during the life cycle of products. RTI provided those estimates to SRMG for analysis in the WA Ecology project2. For the SLO IWMA project SRMG also used LCI techniques and data from the Municipal Solid Waste Life- Cycle Database (Database), prepared by RTI with the support of US EPA during DST model development, to estimate environmental emissions from solid waste management practices3. Once we developed the LCI data for each project, SRMG then prepared a life cycle environmental impacts assessment of the environmental burdens associated with these emissions using the Environmental Problems approach discussed in the methodology section of this article. Finally, for the WA study we also developed estimates of the economic costs of certain environmental impacts in order to assess whether recycling was cost effective from a societal point of view. Conclusions Recycling of newspaper, cardboard, mixed paper, glass bottles and jars, aluminum cans, tin-plated steel cans, plastic bottles, and other conventionally recoverable materials found in household and business municipal solid wastes consumes less energy and imposes lower environmental burdens than disposal of solid waste materials via landfilling or incineration, even after accounting for energy that may be recovered from waste materials at either type disposal facility. This result holds for a variety of environmental impacts, including global warming, acidification, eutrophication, disability adjusted life year (DALY) losses from emission of criteria air pollutants, human toxicity and ecological toxicity. The basic reason for this conclusion is that energy conservation and pollution prevention engendered by using recycled rather than virgin materials as feedstocks for manufacturing new products tends to be an order of magnitude greater than the additional energy and environmental burdens imposed by curbside collection trucks, recycled material processing facilities, and transportation of processed recyclables to end-use markets. Furthermore, the energy grid offsets and associated reductions in environmental burdens yielded by generation of energy from landfill gas or from waste combustion are substantially smaller then the upstream energy and pollution offsets attained by manufacturing products with processed recyclables, even after accounting for energy usage and pollutant emissions during collection, processing and transportation to end-use markets for recycled materials. The analysis that leads to this conclusion included a direct comparison of the collection for recycling versus collection for disposal of the same quantity and composition of materials handled through existing curbside recycling programs in Washington State. This comparison provides a better approximation to marginal energy usage and environmental burdens of recycling versus disposal for recyclable materials in solid waste than does a comparison of the energy and environmental impacts of recycling versus management methods for handling typical mixed refuse, where that refuse includes organics and non-recyclables in addition to whatever recyclable materials may remain in the garbage. Finally, the analysis also suggests that, under reasonable assumptions regarding the economic cost of impacts from pollutant emissions, the societal benefits of recycling outweigh its costs.  相似文献   

7.
Industrial ecology (IE) methodologies, such as input/output or material flow analysis and life cycle assessment (LCA), are often used for the environmental evaluation of circular economy strategies. Up to now, an approach that utilizes these methods in a systematic, integrated framework for a holistic assessment of a geographic region's sustainable circular economy potential has been lacking. The approach developed in this study (IE4CE approach) combines IE methodologies to determine the environmental impact mitigation potential of circular economy strategies for a defined geographic region. The approach foresees five steps. First, input/output analysis helps identify sectors with high environmental impacts. Second, a refined analysis is conducted using material flow and LCA. In step 3, circular strategies are used for scenario design and evaluated in step 4. In step 5, the assessment results are compiled and compared across sectors. The approach was applied to a case study of Switzerland, analyzing 8 sectors and more than 30 scenarios in depth. Carbon capture and storage (CCS) from waste incineration, biogas and cement production, food waste prevention in households, hospitality and production, and the increased recycling of plastics had the highest mitigation potential. Most of the scenarios do not influence each other. One exception is the CCS scenarios: waste avoidance scenarios decrease the reduction potential of CCS. A combination of scenarios from different sectors, including their impact on the CCS scenario potential, led to an environmental impact mitigation potential of 11.9 Mt CO2-eq for 2050, which equals 14% of Switzerland's current consumption-based impacts.  相似文献   

8.
The dual challenges of increasing urbanization and consumption are centered in cities in the Global South, where growing waste production threatens public and environmental health. Reuse and recycling are widely recognized to provide broad environmental benefits. Although most industrialized cities replaced their informal recycling sectors with municipally run recycling schemes and have had to build their recycling rates anew, most industrializing cities in the Global South remain centers of recycling and reuse through the work of informal workers. Bogotá, Colombia, is emblematic of many cities in the Global South seeking to modernize their city, in part by formalizing their recycling system. This article asks: What are the greenhouse gas (GHG) emission implications of this modernization? Using interviews and observation in combination with life cycle assessment, we compare GHG emissions resulting from the baseline case (1,200 tonnes per day [t/d] recycled through informal channels; 5,700 t/d landfilled) to three alternative scenarios that formalize the recycling sector: the prohibition of informal recycling; a reduction in informal recycling coupled with a scale‐up of formalized recycling; and the replacement of informal recycling with formal recycling. We find that the baseline recycling scenario, dependent on the informal sector only, emits far fewer GHGs than do all formalization scenarios. Three processes drive the results, in order of magnitude: informal textile reuse (largest GHG savings); landfilling (largest emitter of GHGs); and metal recycling (GHG savings). A hybrid model could combine the incentives and efficiency of the informal system with the better working conditions of the municipal one.  相似文献   

9.

Purpose

Source-separated collection of food waste has been reported to reduce the amount of household waste in several cities including Kyoto, Japan. Food waste can be reduced by various activities including preventing edible food loss, draining moisture, and home composting. These activities have different potentials for greenhouse gas (GHG) reduction. Therefore, we conducted a life-cycle inventory analysis of household waste management scenarios for Kyoto with a special emphasis on food waste reduction activities.

Methods

The primary functional unit of our study was ??annual management of household combustible waste in Kyoto, Japan.?? Although some life-cycle assessment scenarios included food waste reduction measures, all of the scenarios had an identical secondary functional unit, ??annual food ingestion (mass and composition) by the residents of Kyoto, Japan.?? We analyzed a typical incineration scenario (Inc) and two anaerobic digestion (dry thermophilic facilities) scenarios involving either source-separated collection (SepBio) or nonseparated collection followed by mechanical sorting (MecBio). We assumed that the biogas from anaerobic digestion was used for power generation. In addition, to evaluate the effects of waste reduction combined with separate collection, three food waste reduction cases were considered in the SepBio scenario: (1) preventing loss of edible food (PrevLoss); (2) draining moisture contents (ReducDrain); and (3) home composting (ReducHcom). In these three cases, we assumed that the household waste was reduced by 5%.

Results and discussion

The GHG emissions from the Inc, MecBio, and SepBio scenarios were 123.3, 119.5, and 118.6 Gg CO2-eq/year, respectively. Compared with the SepBio scenario without food waste reduction, the PrevLoss and ReducDrain cases reduced the GHG emissions by 17.1 and 0.5 Gg CO2-eq/year. In contrast, the ReducHcom case increased the GHG emissions by 2.1 Gg CO2-eq/year. This is because the biogas power production decreased due to the reduction in food waste, while the electricity consumption increased in response to home composting. Sensitivity analyses revealed that a reduction of only 1% of the household waste by food loss prevention has the same GHG reduction effect as a 31-point increase (from 50% to 81%) in the food waste separation rate.

Conclusions

We found that prevention of food losses enhanced by separate collection led to a significant reduction in GHG emissions. These findings will be useful in future studies designed to develop strategies for further reductions in GHG emissions.  相似文献   

10.
China produces and consumes a large amount of batteries annually, which leads to many waste batteries needing to be recycled. The collection and recycling system of primary, alkaline secondary, and lithium‐ion secondary batteries in China is particularly poor, and waste battery recycling enterprises generally sustain economic losses if they solely use waste batteries as raw materials. Increasing the profits of waste battery recycling systems is a key problem that needs to be considered. This article quantitatively analyzes waste battery generation in China by using annual sales data and probable lifetime distribution of various batteries. The results show that the rapid growth of battery usage has led to an increased generation of waste batteries and the percentage of different types of waste batteries is changing over time. In 2013, the total quantity of all waste batteries in the medium lifetime scenario reached 570 kilotons, of which primary, alkaline secondary, and lithium‐ion secondary waste batteries accounted for approximately 36%, 28%, and 35%, respectively. Based on a real‐world case study of a typical domestic waste battery recycling enterprise in China, material flow analysis and cost‐benefit analysis were conducted to study the development of the recycling process of comingled waste batteries. Through scenario analysis, we conclude that increasing the use of waste batteries as raw materials and the recycling of other materials that are less valuable reduces the profits of the waste battery recycling enterprise. Higher profits can be achieved by adding the production of high value‐added downstream products and government support. At the same time, the essential role of the government in developing a waste battery recycling system was identified. Finally, relevant suggestions are made for improvements in both the government and enterprise sectors.  相似文献   

11.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

12.
Goal, Scope and Background  Gipuzkoa is a department of the Vasque Country (Spain) with a population of about 700,000 people. By the year 2000 approximately 85% of municipal solid waste in this area was managed by landfilling, and only 15% was recycled. Due to environmental law restrictions and landfill capacity being on its limit, a planning process was initiated by the authorities. LCA was used, from an environmental point of view, to assess 7 possible scenarios arising from the draft Plan for the 2016 time horizon. Main Features  In each scenario, 9 waste flows are analysed: rest waste, paper and cardboard, glass containers, light packaging, organic-green waste, as well as industrial/commercial wood, metals and plastics, and wastewater sludge. Waste treatments range from recycling to energy recovery and landfilling. Results  Recycling of the waste flows separated at the source (paper and cardboard, glass, light packaging, organic-green waste, wood packaging, metals and plastics) results in net environmental benefits caused by the substitution of primary materials, except in water consumption. These benefits are common to the 7 different scenarios analysed. However, some inefficiencies are detected, mainly the energy consumption in collection and transport of low density materials, and water consumption in plastic recycling. The remaining flows, mixed waste and wastewater sludge, are the ones causing the major environmental impacts, by means of incineration, landfilling of partially stabilised organic material, as well as thermal drying of sludge. With the characterisation results, none of the seven scenarios can be clearly identified as the most preferable, although, due to the high recycling rates expected by the Plan, net environmental benefits are achieved in 9 out of 10 impact categories in all scenarios when integrated waste management is assessed (the sum of the 9 flows of waste). Finally, there are no relevant differences between scenarios concerning the number of treatment plants considered. Nevertheless, only the effects on transportation impacts were assessed in the LCA, since the plant construction stage was excluded from the system boundaries. Conclusions  The results of the study show the environmental importance of material recycling in waste management, although the recycling schemes assessed can be improved in some aspects. It is also important to highlight the environmental impact of incineration and landfilling of waste, as well as thermal drying of sludge using fossil fuels. One of the main findings of applying LCA to integrated waste management in Gipuzkoa is the fact that the benefits of high recycling rates can compensate for the impacts of mixed waste and wastewater sludge. Recommendations and Outlook  Although none of the scenarios can be clearly identified as the one having the best environmental performance, the authorities in Gipuzkoa now have objective information about the future scenarios, and a multidisciplinary panel could be formed in order to weight the impacts if necessary. In our opinion, LCA was successfully applied in Gipuzkoa as an environmental tool for decision making.  相似文献   

13.
Purpose

Bio-based recycling systems and agricultural production using recycled materials are often evaluated separately. This study performs an environmental and socio-economic life cycle assessment (LCA) of a food waste treatment and spinach farming system in Japan. The environmental and economic tradeoffs of introducing a recycling system and the net environmental benefit of the substitution of market fertilizer considering operation changes are also examined.

Methods

Three scenarios were developed and compared. In the conventional (CV) scenario, food waste is collected, incinerated, and disposed of in landfill, and the farmer uses market organic fertilizer. The on-site composting (OC) scenario processes food waste using an on-site garbage disposer and transports compost to a nearby spinach farmer. Food waste in the centralized composting (CC) scenario is transported to a centralized composting facility and resultant compost is sent to the farm. Primary data were obtained from field experiments and interviews. Non-greenhouse gas (GHG) emissions from the field and nitrogen leaching to water systems were simulated using the denitrification–decomposition (DNDC) model.

The environmental LCA targeted climate change, eutrophication, and waste landfill. An input–output analysis estimated socio-economic indicators, namely gross added value and employment inducement effect.

Results and discussion

The scenario with the lowest impact is the CC scenario. Climate change and eutrophication impacts are highest in the OC scenario and waste landfill impacts are most significant in the CV scenario. The weighted impact by LIME2 can be reduced by 47% in the CC scenario and 17% in the OC scenario due to the recycling of food waste instead of dumping in the landfill. The difference in socio-economic indicators between the scenarios was relatively small, although the CV scenario encouraged more employment. The substitution effect of composting, as well as the environmental impact reduction of replacing market organic fertilizer with compost, will result in 28.7% of the avoided impacts in GHG emissions.

Conclusions

Both composting scenarios are feasible from an environmental and socio-economic perspective when compared with conventional organic production, although there is a tradeoff between waste landfill and GHG emissions for the on-site composting system. However, the OC scenario needs to save electricity to improve its environmental competitiveness with the CV scenario. When considering the substitution effect of composting, it is recommended to take into account that agricultural operation also changes.

  相似文献   

14.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

15.
Plastics recycling, especially as prescribed by the German Ordinance on Packaging Waste (Verpackungsverordnung), is a conspicuous example of closing material loops on a large scale. In Germany, an industry‐financed system (Duales System Deutschland) was established in 1991 to collect and recycle packaging waste from households. To cope with mixed plastics, various “feedstock‐recycling” processes were developed. We discuss the environmental benefits and the cost‐benefit ratio of the system relative to municipal solid waste (MSW) incineration, based on previously published life‐cycle assessment (LCA) studies. Included is a first‐time investigation of energy recovery in all German incinerators, the optimization opportunities, the impact on energy production and substitution processes, an estimation of the costs, and a cost‐benefit assessment. In an LCA, the total environmental impact of MSW incineration is mainly determined by the energy recovery ratio, which was found on average to reach 39% in current German incineration plants. Due to low revenues from additional energy generation, it is not cost‐effective to optimize the plants energetically. Energy from plastic incineration substitutes for a specific mixture of electric base‐load power, district heating, and process steam generation. Any additional energy from waste incineration will replace, in the long term, mainly natural gas, rather than coal. Incineration of plastic is compared with feedstock recycling methods in different scenarios. In all scenarios, the incineration of plastic leads to an increase of CO2 emissions compared to landfill, whereas feedstock recycling reduces CO2 emissions and saves energy resources. The costs of waste incineration are assumed to decrease by about 30% in the medium term. Today, the calculated costs of CO2 reduction in feedstock recycling are very high, but are ex‐pected to decline in the near future. Relative to incineration, the costs for conserving energy via feedstock recycling are 50% higher, but this gap will close in the near future if automatic sorting and processing are implemented in Germany.  相似文献   

16.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   

17.
Solid waste life cycle modeling has predominantly focused on developed countries, but there are significant opportunities to assist developing and transition economies to minimize the environmental impact of solid waste management (SWM). Serbia is representative of a transition country and most (92%) of its waste is landfilled. As a Candidate European Union (EU) country, Serbia is expected to implement SWM strategies that meet EU directives. The Solid Waste Life‐Cycle Optimization Framework (SWOLF) was used to evaluate scenarios that meet EU goals by 2030. Scenarios included combinations of landfills, anaerobic digestion, composting, material recovery facilities (MRFs), waste‐to‐energy (WTE) combustion, and the use of refuse‐derived fuel in cement kilns. Each scenario was evaluated with and without separate collection of recyclables. Modeled impacts included cost, climate change, cumulative fossil energy demand, acidification, eutrophication, photochemical oxidation, total eco‐toxicity, and total human toxicity. Trade‐offs among the scenarios were evaluated because no scenario performed best in every category. In general, SWM strategies that incorporated processes that recover energy and recyclable materials performed well across categories, whereas scenarios that did not include energy recovery performed poorly. Emissions offsets attributable to energy recovery and reduced energy requirements associated with remanufacturing of recovered recyclables had the strongest influence on the results. The scenarios rankings were robust under parametric sensitivity analysis, except when the marginal electricity fuel source changed from coal to natural gas. Model results showed that the use of existing infrastructure, energy recovery, and efficient recovery of recyclables from mixed waste can reduce environmental emissions at relatively low cost.  相似文献   

18.
In this article we have elaborated a consistent framework for the quantification and evaluation of eco‐efficiency for scenarios for waste treatment of construction and demolition (C&D) waste. Such waste systems will play an increasingly important role in the future, as there has been for many years, and still is, a significant net increase in stock in the built environment. Consequently, there is a need to discuss future waste management strategies, both in terms of growing waste volumes, stricter regulations, and sectorial recycling ambitions, as well as a trend for higher competition and a need for professional and optimized operations within the C&D waste industry. It is within this framework that we develop and analyze models that we believe will be meaningful to the actors in the C&D industry. Here we have outlined a way to quantify future C&D waste generation and have developed realistic scenarios for waste handling based on today's actual practices. We then demonstrate how each scenario is examined with respect to specific and aggregated cost and environmental impact from different end‐of‐life treatment alternatives for major C&D waste fractions. From these results, we have been able to suggest which fractions to prioritize, in order to minimize cost and total environmental impact, as the most eco‐efficient way to achieve an objective of overall system performance.  相似文献   

19.
我国铜铅锌有色冶炼固废种类多、存量大,富含多种环境毒害元素如镉铬汞砷等,而目前固废末端处置方式单一,对其所含的大量铜铅锌银镍等有价金属组分也未能有效分离,固废污染防控与高效资源化利用问题突出,已成为制约产业绿色可持续发展的关键因素。以长江经济带典型铜铅锌综合冶炼基地为例,设置直接处理(情景1)、内部循环(情景2)和协同利用(情景3)三种锌冶炼固废处置情景模式,结合物质投入产出法、层次分析法与熵值法,构建资源能耗、环境风险、物质循环与经济效益的多维生态效率指标核算方法体系,对三种情景模式开展生态效率综合评估分析。结果表明,情景3因加强了锌冶炼固废在铜、铅冶炼系统间的协同转化,其生态效率综合评价指数最高,为0.2246,较情景1和情景2分别高出313.6%和25.5%;从资源能耗角度来看,情景2单位产品能耗最高,达0.3086;而从物质循环和经济效益角度来看,情景3固废综合利用率最高,达97.6%,铜铅锌三种有价金属回收率达97.2%,利润总额达48131.3万元;但在环境风险方面,尽管情景3固废中重金属污染排放减少1470.4 t/a,但废气中铅砷镉汞等重金属污染排放却比情景1增加了3倍...  相似文献   

20.
India, like many other developed and developing countries, has adopted an extended producer responsibility (EPR) approach for electronic waste (e‐waste) management under its E‐waste (Management and Handling) Rules, 2011. Under these rules, producers have been made responsible for setting up collection centers of e‐waste and financing and organizing a system for environmentally sound management of e‐waste. In this article, we use the implementation of these rules in Ahmedabad in western India as a case study to conduct a critical analysis of the implementation of India's Rules. Interviews of main stakeholder groups, including a sample of regulated commercial establishments, regulatory agencies enforcing the Rules, informal actors involved in waste collection and handling, as well as publicly available information on the implementation constitute data for our case study. Our results indicate that while there has been an increase in the formal waste processing capacity after the implementation of the Rules, only 5% to 15% of the total waste generated is likely channeled through formal processing facilities. While the EPR regulation forced the producers to take action on a few relatively inexpensive aspects of the Rules, the collection and recycling system has not been made convenient for the consumers to deposit e‐waste in formal collection and recycling centers. Based on our findings, we argue that Indian EPR regulation should go beyond simple take‐back mandates and consider implementing other policy instruments such as a deposit‐refund system. An important implication for developing countries is the need for careful attention to instrument choice and design within EPR regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号