共查询到20条相似文献,搜索用时 19 毫秒
1.
<Emphasis Type="Italic">Agrobacterium</Emphasis>-mediated genetic transformation of <Emphasis Type="Italic">Perilla frutescens</Emphasis> 总被引:3,自引:0,他引:3
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies. 相似文献
2.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens 相似文献
3.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis. 相似文献
4.
Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745
and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of
the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies
and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled
by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin).
Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient
protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting
detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants
to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid. 相似文献
5.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize. 相似文献
6.
Martina Beranová Slavomír Rakouský Zuzana Vávrová Tomáš Skalický 《Plant Cell, Tissue and Organ Culture》2008,94(3):253-259
A sonication-assisted, Agrobacterium-mediated, co-cultivation technique was used in an attempt to increase the transformation efficiency of flax. Hypocotyls and
cotyledons excised from about 10-day-old flax seedlings grown in vitro were placed into a 10 mM MgSO4 solution, and inoculated with an A. tumefaciens vector bearing the mgfp5-ER gene driven by the CaMV 35S promoter. The explants were subjected to pulses of ultrasound delivered by a sonicator apparatus
(35 kHz) for 0–150 s and co-cultivated for 2 h at 27°C. The dried hypocotyls and cotyledons were grown on a selective MS medium
to promote shoot regeneration. An electron microscopic study showed that the sonication treatment resulted in thousands of
microwounds on and below the surface of the explants. A stereo microscope Leica MZ 12 equipped with a GFP adaptor was used
to assess the infection and transformation of plant tissues in real time. After only 48 h and for at least 30 days after bacteria
elimination, signs of transgene expression could be seen as a bright fluorescence. Our results show that treatment with ultrasound
facilitates an enhanced uptake of plasmid DNA into the cells of flax hypocotyls and cotyledons and that its efficiency depends
on the duration of the treatment and the frequency used. SAAT could be a promising tool for enhancing transformation efficiency
in flax. 相似文献
7.
Byoung-Kyu?Lee Seung-Hee?Yu Yul-Ho?Kim Byung-Ohg?Ahn Han-Sun?Hur Sang-Chul?Lee Zhanyuan?Zhang Jang-Yong?Lee
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants. 相似文献
8.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars.
It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation
duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency
as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based
on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for
maximum transgenic production are required for each individual cultivar. 相似文献
9.
Qi Zhu Fengtao Wu Feng Ding Dong Ye Yongqin Chen Yi Li Yang Zhifan 《Plant Cell, Tissue and Organ Culture》2009,96(3):317-324
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important
steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and
female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive
to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation
medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three
days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for
formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh
selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of
the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to
produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated
from initial infected callus explants. 相似文献
10.
The US Department of Energy recently released a 6.8X draft of the genome sequence for Nisqually-1, a genotype of black cottonwood
(Populus trichocarpa). To improve its utility for functional genomics research, having an efficient means for transformation and regeneration
is necessary. To examine several parameters known to affect the transformation rate, we cocultivated leaf disc and stem explants
with a strain ofAgrobacterium tumefaciens harboring a binary plasmid vector containing genes for both neomycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Shoot regeneration from stem explants was observed in the presence of kanamycin when thidiazuron was incorporated in the
selection medium. Transformation efficiency was influenced by the level of thidiazuron to which explants were exposed during
the early stages of shoot induction. Histochemical assays revealed expression of theGUS gene in leaf, stem, and root tissues of transgenic plants. Polymerase chain reaction confirmed the presence of both selectable
marker and reporter genes in all lines that stained positive for β-glucuronidase activity. By use of our modified protocol,
transgenic plants were recovered within 6 mo at an efficiency of 6%, adequate to produce a large number of transgenic events
with modest effort. 相似文献
11.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR)
tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay
showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving
the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation. 相似文献
12.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic
plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic
plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved.
The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines,
the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated
one or two copies of the uidA gene.
C. Gao and J. Liu contributed equally to the work. 相似文献
13.
A highly efficient and convenient method for the Agrobacterium rhizogenes-dependent production of transformed roots of Saponaria vaccaria L. (Caryophyllaceae) is described. The parameters tested and optimized include S. vaccaria cultivar, explant type, Agrobacterium rhizogenes strain and culture conditions. For cotransformation using additional recombinant T-DNA-containing A. rhizogenes strains, use of neomycin phosphotransferase and enhanced green fluorescent protein genes as selectable markers were tested
alone and in combination. Optimal results, yielding a minimum of one transformed root per explant, were obtained using the
cultivar Pink Beauty, the A. rhizogenes strain LBA9402 and internode explants precultured on a phytohormone mixture. Selection of cotransformed roots by observation
of enhanced green fluorescent protein fluorescence alone was highly effective and convenient.
NRCC Publication No. 48435. 相似文献
14.
Summary Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important
cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such
as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine.
Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype,
explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important
for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments,
desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols.
The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors
influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily
available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes
stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation
and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems. 相似文献
15.
16.
As a first step in the development of a successful Agrobacterium tumefaciens mediated transformation method for kenaf, factors influencing the successful T-DNA integration and expression (as measured by the GUS expression) were investigated. Transformation was carried out using two kenaf cultivars and Agrobacterium strain EHA 105 carrying different vectors, plasmid pIG 121-Hm or pEC:gus. Pre-culturing the explants for 2days in benzyl adenine containing medium, and wounding the explant before inoculation were found to enhance the transient GUS expression. Increasing the duration of pre-culture and co-culture period enhanced the transient GUS expression up to a threshold level. Increased transient GUS expression did not correlate with an increase in stable expression. Gene integration was confirmed by PCR analysis. 相似文献
17.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits
within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated
with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut
into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid
(NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated
after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant
genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed
in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment
of this transformation system is invaluable for investigating fruit-tree-specific phenomena. 相似文献
18.
An efficient and reproducible transformation method of sonication- assisted Agrobacterium-mediated transformation (SAAT) was developed for chickpea (Cicer arietinum L.). Agrobacterium tumefaciens (LBA4404) harboring pCAMBIA1305.2 was used to transform decapitated embryo explants of two cultivars of chickpeas. By using
a series of co-cultivation, callus induction, shoot initiation and root inducing media, a large number of transgenic plants
were recovered. Transient expressions of GUS gene were detected by X-Gluc histochemical assay in transformed tissues. DNA analysis of T0 and T1 plants by PCR and Southern
hybridization confirmed the integration of transgenes in initial and next generation transformants in different transgenic
lines. The transformation efficiency was more than two times higher in SAAT treatment than simple Agrobacterium without sonication. 相似文献
19.
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species. 相似文献
20.
An efficient system of gene transformation is necessary for soybean [Glycine max (L.) Merrill] functional genomics and gene modification by using RNA interference (RNAi) technology. To establish such system, we improved the conditions of tissue culture and transformation for increasing the frequency of adventitious shoots and decreasing the browning and necrosis of hypocotyls. Adding N(6)-benzylaminopurine (BAP) and silver nitrate in culture medium enhanced the shoot formation on hypocotyls. BAP increased the frequency of the hypocotyls containing adventitious shoots, while silver nitrate increased the number of shoots on the hypocotyls. As a result, the number of adventitious shoots on hypocotyls cultured in medium containing both BAP and silver nitrate was 5-fold higher than the controls. Adding antioxidants in co-cultivation medium resulted in a significant decrease in occurrence of browning and necrosis of hypocotyls and increase in levels of beta-Glucuronidase (GUS) gene expression. Histochemical assays showed that the apical meristem of hypocotyls was the "target tissue" for Agrobacterium tumefaciens transformation of soybean. Gene silencing of functional gene by using RNAi technology was carried out under above conditions. A silencing construct containing an inverted-repeat fragment of the GmFAD2 gene was introduced into soybean by using the A. tumefaciens-mediated transformation. Several lines with high oleic acid were obtained, in which mean oleic acid content ranged from 71.5 to 81.9%. Our study demonstrates that this transgenic approach could be efficiently used to improve soybean quality and productivity through functional genomics. 相似文献