首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syu SE  Huang CH  Chen KW  Lee CJ  Das U  Jang YJ  Lin W 《Chirality》2012,24(8):600-605
Organocatalysts bearing sulfide or sulfone functions (1a-d) were studied for the direct asymmetric Michael addition of ketones and alkylidene malonates. The organocatalyst (S)-2-((naphthalen-2-ylthio)methyl)pyrrolidine, bearing a pyrrolidine and a sulfide moiety, showed a very high catalytic activity in the absence of additives. The reaction condition is mild, and the Michael adducts were obtained in very good enantioselectivities (up to 96%), diastereoselectivities (up to 95:5), and chemical yields (up to 95%).  相似文献   

2.
Cinchona alkaloid‐derived 4‐methyl/nitro benzoylthioureas were synthesized, which smoothly catalyzed the asymmetric Michael addition of pyrazolin‐5‐ones to nitroolefins. The results showed that electronic effects of substituents in the benzene ring of benzoylthioureas have subtle influences on their catalytic abilities and electron donating methyl group is favored than electron withdrawing nitro group. Preliminary Hartree‐Fock calculations revealed that in the catalytic cycle, hydrogen bond energies of the complex formed with 4‐methylbenzoylthioureas are about 0.19 to 1.56 kcal/mol higher than with the corresponding 4‐nitrobenzoylthioureas. 4‐Methylbenzoylthioureas were identified as the most effective catalysts that promoted asymmetric Michael addition of pyrazolin‐5‐ones to nitroolefins to give the S‐ or R‐products with high enantioselectivities.  相似文献   

3.
There is an escalating interest of using double stranded DNA molecules as a chiral scaffold to construct metal‐biomacromolecule hybrid catalysts for asymmetric synthesis. Several recent studies also evaluated the use of G‐quadruplex DNA‐based catalysts for asymmetric Diels‐Alder and Friedel‐Crafts reactions. However, there is still a lack of understanding of how different oligonucleotides, salts (such as NaCl and KCl), metal ligands and co‐solvents affect the catalytic performance of quadruplex DNA‐based hybrid catalysts. In this study, we aim to systematically evaluate these key factors in asymmetric Michael addition reactions, and to examine the conformational and molecular changes of DNA by circular dichroism (CD) spectroscopy and gel electrophoresis. We achieved up to 95% yield and 50% enantiomeric excess (ee) when the reaction of 2‐acylimidazole 1a and dimethylmalonate was catalyzed by 5′‐G3(TTAG3)3?3′ (G4DNA1) in 20 mM MOPS (pH 6.5) containing 50 mM KCl and 40 µM [Cu(dmbipy)(NO3)2], and G4DNA1 was pre‐sonicated in ice bath for 10 min prior to the reaction. G‐quadruplex‐based hybrid catalysts provide a new tool for asymmetric catalysis, but future mechanistic studies should be sought to further improve the catalytic efficiency. The current work presents a systematic study of asymmetric Michael addition catalyzed by G‐quadruplex catalysts constructed via non‐covalent complexing, and an intriguing finding of the effect of pre‐sonication on catalytic efficiency. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:891–898, 2016  相似文献   

4.
Novel chiral secondary amines bearing a tetraoxacalix[2]arene[2]triazine scaffold were created and used for catalytic asymmetric Michael reaction of anthrone with nitroalkenes. The relevant adducts were obtained in good to excellent yields (82%‐98%) and enantioselectivities (75%‐98%).  相似文献   

5.
A doubly stereocontrolled organocatalytic asymmetric Michael addition to the synthesis of substituted succinimides is described. Starting from aldehydes and maleimides, both enantiomers of the succinimides could be obtained in high to excellent yields (up to 98%) and enantioselectivities (up to 99%) when one of the two special chiral diterpene‐derived bifunctional thioureas was individually used as a catalyst. Moreover, these catalysts can be efficiently used in large‐scale catalytic synthesis with the same level of yield and enantioselectivity. Chirality 00:000–000, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
(S)- and (R)-BIMBOL were efficient PT catalysts of asymmetric Michael addition of prochiral Ni-PBP-Gly (1) to acrylic esters and malonic esters to Ni-PBP-Δ-Ala (2) correspondingly. The salient feature of the catalysis is opposite configurations of Glu prepared via the two paths with BIMBOL of the same configuration and a perspective novel catalytic procedure for the synthesis of Gla derivatives.  相似文献   

7.
A novel asymmetric oxy-Michael addition reaction was developed. In the presence of a catalytic amount of base, chiral ketones 1 and 2, derived from D-glucose and D-fructose, respectively, reacted with omega-hydroxy enones or enoates 3a-e, 17 and 21 to form the hemiacetal-derived alkoxide which underwent stereoselective intramolecular Michael addition to give cyclic acetals. Although the stereoselectivities in the formation of the five-membered acetal rings were modest, six-membered ring formation proceeded with high stereoselectivity and the utility of the reaction was demonstrated by a simple syntheses of natural products.  相似文献   

8.
Although the organocatalytic direct asymmetric Michael reactions of carbonyl compounds to nitroalkenes have been investigated intensely, the Michael reaction of the thioether‐based donors remains a rather undeveloped field. This work concerns the asymmetric Michael addition of aryl sulfanyl‐propan‐2‐one to nitroalkenes with benzoic acid as an additive, and chiral amine‐thiourea as a bifunctional organocatalyst. The reactions provided the highly functionalized chiral adducts with excellent enantioselectivities (up to 96% ee) and good yields. Moreover, the further transformed products exhibited excellent diastereoselectivity. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Chiral amine-squaramide is a kind of effective hydrogen bond donor bifunctional catalyst to promote many asymmetric transformations. In this paper, novel chiral tertiary amine-squaramide derived from the natural product of the stevioside was developed and applied into the asymmetric Michael addition of acetylacetone to nitroolefins. This asymmetric reaction performed well, and a series of enantiomerically enriched compounds were obtained in high yields (up to 96%) with excellent enantioselectivities (up to 99% ee).  相似文献   

10.
A novel type of oxacalix[2]arene[2]triazine‐based organocatalysts for asymmetric Michael reactions are reported for the first time. Chiral subunits were attached to the heteroatom‐bridged calixaromatic platform by a reaction of (R)‐ and (S)‐1‐aminotetraline with tetraoxacalix[2]arene[2]triazine in both enantiomeric forms. To evaluate the catalytic efficiency of the novel organocatalysts, isobutyraldehyde reacted with various substituted and unsubstituted aromatic trans‐β‐nitrostyrenes in tetrahydrofuran (THF), leading to Michael adducts in excellent yields and enantioselectivites (up to 97% yield and 99% ee).  相似文献   

11.
The example of enzyme-catalyzed asymmetric C–C Michael addition was observed using Lipozyme TLIM (immobilized lipase from Thermomyces lanuginosus) in organic medium in the presence of water. This biocatalysis is applicable to the Michael additions of a wide range of 1,3-dicarbonyl compounds and cyclohexanone to aromatic and heteroaromatic nitroolefins and cyclohexenone. The enantioselectivities up to 83% ee and yields up to 90% were achieved. The enzyme can be reused for three cycles.  相似文献   

12.
The asymmetric synthesis of an aryltetralin lignan, (-)-lintetralin, was achieved with an overall yield of 29% with seven steps. Key features of the synthesis are an asymmetric Strecker reaction, a diastereoselective Michael addition of the lithiated amino nitrile product to 5H-furan-2-one, and an intramolecular carbocationic cyclization to provide the desired ring skeleton with the correct configuration.  相似文献   

13.
Though many chiral amines such as l-proline and its derivatives have proven to be versatile catalysts in many reactions, l-prolinol was seldom used as organocatalyst for reactions. Herein, we report the first l-prolinol catalyzed asymmetric Michael addition of cyclohexanone to nitroolefins in the presence of benzoic acid to afford Michael adducts with high diastereoselectivities (87:13–>99:1) and enantioselectivities (82–96%).  相似文献   

14.
A benzoylthiourea–pyrrolidine catalyst was developed for the asymmetric Michael addition of ketones to chalcones. The corresponding products were obtained in high yields with high level of diastereoselectivities (up to 99:1 dr) and high level of enantioselectivities (up to 94% ee) under mild conditions.  相似文献   

15.
Chen FX  Shao C  Liu Q  Gong P  Liu CL  Wang R 《Chirality》2009,21(6):600-603
A mild method for the asymmetric synthesis of quaternary and tertiary carbon centers has been developed through Michael addition of trisubstituted carbon nucleophile to nitroalkenes catalyzed by low loading sodium demethylquinine salt in water.  相似文献   

16.
An efficient asymmetric Michael addition of cyclic ketones to β-nitrostyrenes using secondary diamine as an organocatalyst derived from l-proline and (R)-α-methylbenzyl amine has been described. This pyrrolidine based catalyst 1 was found to be very effective to synthesize various γ-nitrocarbonyl compounds in good yield (up to 81%) with excellent stereoselectivity (up to >99:1 dr and >99% ee).  相似文献   

17.
A few new d ‐mannitol‐based monoaza‐15‐crown‐5 type chiral lariat ethers and 18‐crown‐6 type macrocycles were synthesized. These crown compounds were used as phase transfer catalysts in asymmetric Michael addititons and in a Darzens condensation under mild conditions to afford the corresponding products in a few cases in good to excellent enantioselectivities. In the Michael addition of diethyl acetoxymalonate to trans‐chalcone, in the addition of diethyl acetamidomalonate to ß‐nitrostyrene, in the reaction of diethyl bromomalonate with benzylidene malononitriles, in the cyclopropanation reaction of diethyl bromomalonate and 2‐benzylidene‐1,3‐indandione, and in the Darzens condensation of α‐chloroacetophenone with benzaldehyde, maximum enantioselectivities of 39%, 65%, 99%, 56%, and 62%, respectively, were obtained in the presence of the d ‐mannitol‐based macrocycles as the catalysts.  相似文献   

18.
Szántó G  Bombicz P  Grün A  Kádas I 《Chirality》2008,20(10):1120-1126
Six active 4-aryl-5-nitro-pentan-2-ones were synthesized enantioselectively from the corresponding 5-aryl-butenones by asymmetric Michael addition of nitromethane using an imidazolidine-type enantioselective organocatalyst. The ee ratio of the products were between 67 and 100%, determined by HPLC with Chiracel OD. Molecular and crystal structure of 3,4-methylenedioxy-phenyl-5-nitro-pentan-2-one has been studied by single crystal X-ray diffraction.  相似文献   

19.
By screening a library of metalloenzyme inhibitors, the N-formyl-hydroxylamine derivative BB-3497 was identified as a potent inhibitor of Escherichia coli peptide deformylase with antibacterial activity both in vitro and in vivo. The homochiral synthesis of BB-3497, involving a novel asymmetric Michael addition reaction is described.  相似文献   

20.
Qin Y  Zhao W  Yang L  Zhang X  Cui Y 《Chirality》2012,24(8):640-645
Novel chitosan-supported cinchona alkaloids have been developed as heterogeneous catalysts for enantioselective Michael reaction. As-synthesized products as organocatalysts for asymmetric Michael reaction have a high efficiency, providing highly functionalized products (containing adjacent quaternary and tertiary stereocenters) with good stereoselectivity (up to 93% enantiomeric excess) in high yields and recyclability (up to five runs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号