首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

2.
Bioremediation of weathered diesel fuel in Arctic soil at low temperature was studied both on-site in small-scale biopiles and in laboratory microcosms. The field study site was on Ellesmere Island (82°30'N, 62°20'W). Biostimulation was by fertilization with phosphorous and nitrogen. Bioaugmentation was with an enrichment culture originating from the field site. In biopiles, total petroleum hydrocarbons (TPH) were reduced from 2.9 to 0.5 mg/g of dry soil over a period of 65 days. In microcosms at 7 °C, TPH were reduced from 2.4 to 0.5 mg/g of dry soil over a period of 90 days. Inoculation had no effect on hydrocarbon removal in biopiles or in microcosms. Maximum TPH removal rates in the biopiles were approximately 90 μg of TPH g–1 of soil day–1, occurring during the first 14 days when ambient temperature ranged from 0 to 10 °C. The fate of three phylotypes present in the inoculum was monitored using most-probable-number PCR, targeting 16S rRNA genes. Populations of all three phylotypes increased more than 100-fold during incubation of both uninoculated and inoculated biopiles. The inoculum increased the initial populations of the phylotypes but did not significantly affect their final populations. Thus, biostimulation on site enriched populations that were also selected in laboratory enrichment cultures. Electronic Publication  相似文献   

3.
The effects of environmental and nutritional factors on population dynamics and toxin production were examined in Alexandrium catenella, maintained in enriched K media in laboratory cultures. Starting with a density of 50 cell ml−1, the dinoflagellate population typically showed a lag phase and an exponential growth phase which lasted 14 days each, and then entered the stationary phase, with a maximal capacity of 12–18,000 cell ml−1-. Population densities showed distinct diurnal patterns, with population growth beginning 2–4 hours in darkness. The optimal physical conditions for growth were pH 8.5,salinity of 30–35‰, temperature of 20–25°C, and photoperiod of 14//10D to 16L/8D. The cell cycle was determined by flow cytometry on synchronized batch cultures maintained at optimal pH, salinity, temperature and under 5 different photoperiod regimes. It was found that the G1 phase was timed to end at approximately 3 h after onset of darkness, and the G2/M phase had begun at 4 hours. Nutrient supply markedly affected population growth. Under optimal physical conditions, the optimal concentrations for macronutrients and micronutrients were: NH+−4- 0.025–0.2 mM,NO−3 0.22–8.83 mM, glycerophosphate0.04–0.06 mM, silicate 0.1–0.54 mM; FeEDTA 0.07–0.11 mM;Co 0.1 μM, Cu 0.005–0.04 μM; Mn 0.22–7.2 μM;Mo 0.03–0.6 μM; Se 0.02–0.1 μM; Zn 0.04–1.6μM; thiamin 0.075–6 μM; vitamin B120.0004–0.004 μM; biotin 0.007–0.015 μM; EDTA5–40 μM. The toxin profile of A. catenella was determined by HPLC and found to include in descending order: GTX-4, GTX-3, GTX-1, B2, neosaxitoxin, saxitoxin. Toxin content per cell was highest in cell populations in the early exponential phase. The highest toxin per litre medium was recorded at 20°C at the beginning of the stationary phase,when cell density was highest and toxin/cell was still relatively high. At10°C, the cell density was low while the amount of toxin/cell was high;while at 30°C, the population at full capacity was low and the toxin/cell was also low. The population and toxin data thus provided an explanation for the peak level of PSP contamination in shellfish during the months of March–April around the eastern and southern side of Hong Kong and a minor peak extending to the western side in September–October, when the physical conditions of the seawater provided the right environment for toxin accumulation. Toxin content in the dinoflagellate reached its maximum during the S-phase of the cell cycle. Nitrogen restriction in the medium reduced population growth and toxin production, while phosphorus restriction reduced only population growth but enhanced toxin accumulation in the cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary. The objective of this study was to examine the in vivo effect of melatonin on rat mitochondrial liver respiration. Two experiments were performed: For experiment 1, adult male rats received melatonin in the drinking water (16 or 50 μg/ml) or vehicle during 45 days. For experiment 2, rats received melatonin in the drinking water (50 μg/ml) for 45 days, or the same amount for 30 days followed by a 15 day-withdrawal period. At sacrifice, a liver mitochondrial fraction was prepared and oxygen consumption was measured polarographically in the presence of excess concentration of DL-3-β-hydroxybutyrate or L-succinate. Melatonin treatment decreased Krebs’ cycle substrate-induced respiration significantly at both examined doses. The stimulation of mitochondrial respiration caused by excess concentration of substrate recovered after melatonin withdrawal. Basal state 4 respiration was not modified by melatonin. Melatonin, by curtailing overstimulation of cellular respiration caused by excess Krebs’ cycle substrates, can protect the mitochondria from oxidative damage.  相似文献   

5.
Chaetoceros convolutus and C. concavicornis have been implicated in the death of salmon in netpens in the Pacific Northwest by damaging the salmon's gills. To better understand how environmental factors affect the distribution of these two species, the interacting effects of light, temperature and salinity on growth rate were examined by growing these species under a range of temperatures (4–18 °C), light (10–175 μmol photon m−2 s−1) and salinities (10–30‰). For C. convolutus, the growth rate showed a hyperbolic relationship with irradiance at 8, 14 and 18 °C and light saturation occurred at 9, 14 and 20 μmol photon mt s−1 respectively. At 4 °C for C. convolutus and 8 °C for C. concavicornis, cells grew at μmax, even at the lowest irradiances tested (10 μmol photon m−2 s−1). For C. convolutus, the amount of light required to saturate growth rate increased with temperature in an approximately linear fashion. The Q10 was 1.88, calculated by averaging over both species. C. concavicornis was the more euryhaline species growing at salinities as low as 17.5‰, while C. convolutus grew only at 25‰ and above.  相似文献   

6.
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19–25 °C), were transferred to 4.5 or 9 °C at photon flux density (PPFD) of 950 μmol m−2 s−1 with 10-h photoperiod for 58 h and then allowed to recover at 22 °C for 16 h (14 h dark and 2 h at PPFD of 180 μmol m−2 s−1). The ultrastructural responses after 4 h or 26 h at 4.5 °C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 °C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 °C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.  相似文献   

7.
The effect of a high bromide intake on the kinetics of iodide uptake and elimination in the thyroid and skin of adult male rats was studied. In rats fed a diet with sufficient iodine supply (>25 μg I/d), the iodide accumulation in the skin predominated during the first hours after 131I -iodide application. From this organ, radioiodide was gradually transferred into the thyroid. A high bromide intake (>150 mg Br/d) in these animals led to a marked decrease in iodide accumulation, especially by the thyroid, because of an increase in iodide elimination both from the thyroid and from the skin. In rats kept under the conditions of iodine deficiency (<1 μ I/d), the iodide accumulation in the thyroid, but not in the skin, was markedly increased as a result of a thyrotropic stimulation. The effect of a high bromide intake (>100 mg Br/d) in these animals was particularly pronounced because the rates of iodide elimination were most accelerated both from their thyroid and from their skin. Presented in part at the 20th Workshop on Macro and Trace Elements held in Jena (Germany) on December 1–2, 2000.  相似文献   

8.
Periphyton growth and diatom community structure in a cooling water pond   总被引:3,自引:3,他引:0  
Periphyton (Aufwuchs) accumulation was measured on artificial substrates in a pond in central Finland which receives warm cooling-water effluent from a power plant. The growth of periphyton was generally more rapid on the substrates during the first two weeks of colonization near the inflow of the warm water effluent than in the middle of the pond. The maximum accumulation of periphyton was in spring and autumn (dry weight maximum at warm effluent was in spring 3.5 mg DW cm−2,2.65 mg AFDW cm−2; chlorophyll a maximum 3.96 μg cm−2 was found in autumn at pond-middle station). During mid-winter months the growth was strongly limited by solar radiation, but the growth was also slow at both stations in the summer months, when the power plant was out of operation. The periphyton accumulation rate was fastest near the water surface and decreased rapidly with increasing depth. A total of 167 diatom species were found in periphyton samples. However, most species were rare; many of the dominants were common to both plankton and periphyton. Species similarity analyses (Jaccard's similarity) between 10 different diatom communities (including periphyton from 9 different types of substrates and phytoplankton) indicated low similarity index values although differences between communities were not significant.  相似文献   

9.
Pore water and solid phase distributions of C, N, P and Si in sediments of the Arctic Ocean (Svalbard area) have been investigated. Concentrations of organic carbon (Corg) in the solid phase of the sediment varied from 1.3 to 2.8% (mean 1.9%), with highest concentrations found at shallow stations south/southwest of Svalbard. Relatively low concentrations were obtained at the deeper stations north/northeast of Svalbard. Atomic carbon to nitrogen ratios in the surface sediment ranged from below 8 to above 10. For some stations, high C/N ratios together with high concentrations of Corg suggest that sedimentary organic matter is mainly of terrigenous origin and not from overall biological activity in the water column. Organic matter reactivity (defined as the total sediment oxygen consumption rate normalized to the organic carbon content of the surface sediment) correlated with water depth at all investigated stations. However, the stations could be divided into two separate groups with different reactivity characteristics, representing the two most dominant hydrographic regimes: the region west of Svalbard mainly influenced by the West Spitsbergen Current, and the area east of Svalbard where Arctic polar water set the environmental conditions. Decreasing sediment reactivity with water depth was confirmed by the partitioning between organic and inorganic carbon of the surface sediment. The ratio between organic and inorganic carbon at the sediment-water interface decreased exponentially with water depth: from indefinite values at shallow stations in the central Barents Sea, to approximately 1 at deep stations north of Svalbard. At stations east of Svalbard there was an inverse linear correlation between the organic matter reactivity (as defined above) and concentration of dissolved organic carbon (DOC) in the pore water. The more reactive the sediment, the less DOC existed in the pore water and the more total carbonate (Ct or ΣCO2) was present. This observation suggests that DOC produced in reactive sediments is easily metabolizable to CO2. Sediment accumulation rates of opaline silica ranged from 0.35 to 5.7 μmol SiO2 m−2d−1 (mean 1.3 μmol SiO2 m−2d−1), i.e. almost 300 times lower than rates previously reported for the Ross Sea, Antarctica. Concentrations of ammonium and nitrate in the pore water at the sediment-water interface were related to organic matter input and water depth. In shallow regions with highly reactive organic matter, a pool of ammonium was present in the pore water, while nitrate conoentrations were low. In areas where less reactive organic matter was deposited at the sediment surface, the deeper zone of nitrification caused a build-up of nitrate in the pore water while ammonium was almost depleted. Nitrate penetrated from 1.8 to ≥ 5.8 cm into the investigated sediments. Significantly higher concentrations of “total” dissolved nitrogen (defined as the sum of NO3, NO2, NH4 and urea) in sediment pore water were found west compared to east of Svalbard. The differences in organic matter reactivity, as well as in pore water distribution patterns of “total” dissolved nitrogen between the two areas, probably reflect hydrographic factors (such as ice coverage and production/import of particulate organic material) related to the dominant water mass (Atlantic or Arctic Polar) in each of the two areas. The data presented were collected during the European “Polarstern” Study (Arctic EPOS) sponsored by the European Science Foundation  相似文献   

10.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

11.
Growth, maturation and survival of a free living turbellarian Macrostomum orthostylum (BRAUN), from a brackish water fish-farm, were studied in the laboratory under a constant temperature of 24 °C. The worms tolerated a wide range of salinity (1 to 30‰). Maximum growth (total length) of 1000 μm was attained in 56 days with a mean growth rate of 15.7 μm d-1. Minimum maturation time (7 days) and highest longevity (112 days) were recorded in 9%. salinity. Survival period was considerably longer at lower salinities (1 to 10‰) and showed negative relationship with higher salinities (11 to 30‰).  相似文献   

12.
In this work the susceptibility of mobile and cystic forms of Borrelia burgdorferi to hydroxychloroquine (HCQ) was studied. The minimal bactericidal concentration (MBC) of HCQ against the mobile spirochetes was >32 μg/ml at 37 °C, and >128 μg/ml at 30 °C. Incubation with HCQ significantly reduced the conversion of mobile spirochetes to cystic forms. When incubated at 37 °C, the MBC for young biologically active cysts (1-day old) was >8 μg/ml, but it was >32 μg/ml for old cysts (1-week old). Acridine orange staining, dark-field microscopy and transmission electron microscopy revealed that the contents of the cysts were partly degraded when the concentration of HCQ was ≥MBC. At high concentrations of HCQ (256 μg/ml) about 95% of the cysts were ruptured. When the concentration of HCQ was ≥MBC, core structures did not develop inside the cysts, and the amount of RNA in these cysts decreased significantly. Spirochetal structures inside the cysts dissolved in the presence of high concentrations of HCQ. When the concentration of HCQ was ≥MBC, the core structures inside the cysts were eliminated. These observations may be valuable in the treatment of resistant infections caused by B. burgdorferi, and suggest that a combination of HCQ and a macrolide antibiotic could eradicate both cystic and mobile forms of B. burgdorferi. Electronic Publication  相似文献   

13.
Künnis  Kai 《Hydrobiologia》1997,363(1-3):253-260
Microbial degradation of algal detritus was studied experimentally usingthe diatom Skeletonema costatum prekilled culture as a substrate for themarine microbial community. The qualitative and quantitative changes in themicrobial community and the algal detritus structure were followed during 11days of incubation at the water temperature of 20°C. Most of thebacterial parameters (epifluorescence microscopy counts of free-living andattached cells, mean cell volume, biomass and productivity) were the highestafter 24 h from the algal detritus addition to the microbial community. Thebacterial peak (3.6×106 cells ml™1,biomass 3.1 μgC ml™1, net production 66×4 ngC ml™1h™1) was followed by a precipitous increaseof homogenous nanoflagellate population with a maximum number of2.6×105 cells ml™1, which in turn declinedquickly after ciliates appeared in the community. The bacterial production,initiated by the supplement of algal detritus, was totally ingested bymicrozoans within 3 days. Changes of the structure of marine bacterialassemblage and relative increase of the amount of attached bacteria duringthe period of massive development of nanoflagellates emphasized theimportance of small flagellates predation on the free-living average size(cell volume 0.1–0.2 μm3) pelagic bacteria. After11 days of incubation on algal detritus the initial bacterial assemblage wasreplaced by the mixed succession of bacteria, flagellates and ciliates at aproportion of 1000 : 1.5 : 0.2. The stabilization of microbialcommunity and changes in algal detritus structure allow to expect thatpelagic microbial utilization of Skeletonema costatum bloom(53×106 cells l™1), could be finishedwithin a period of 8–11 days at the summer water temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The vertical distributions of bacteria and algae in a steeply stratified, highly humic lake were studied during three 24 h periods in summer. The highest bacterial and algal densities and biomasses were recorded in the anoxic hypolimnion. The bacterial biomass in the hypolimnion was composed mainly of photosynthetic green sulphur bacteria (Chlorobium) which occurred at very low light intensity (< 1.5 μmol m−2 s−1). The numbers and biomasses of bacteria, both in the epilimnion and hypolimnion, were mostly higher at night than during the day, indicating possible asynchrony between the production and loss of bacteria. Because of vertical migration, the diurnal vertical distribution of algae was more variable than that of bacteria. Particularly in July and August, when cryptomonads were abundant, the biomass of algae was much higher in the epilimnion during the day than at night. The flagellated chlorophytes, Chlamydomonas spp. and Scourfieldia cordiformis, stayed mainly in the upper hypolimnion close to the oxic-anoxic boundary zone where only a small proportion of Daphnia longispina was continuously present. Unpalatable Mallomonas chrysophytes with silicified plates and bristles, and small, presumably heterotrophic, flagellates stayed in the oxic epilimnion together with a dense (up to 300 ind l−1) population of D. longispina. The results indicated that, besides the physical and chemical properties of the water column, grazing pressure by Daphnia longispina strongly affected the vertical distribution of microorganisms in this polyhumic lake.  相似文献   

15.
A bacterial strain belonging to the speciesThermus was isolated from the water of a Carlsbad hot spring at 70–73°C. The microorganism can grow aerobically and forms yellow and orange colonies on a special medium, due to a carotenoid pigment. The growth optimum is 70–75°C. The minimum and maximum temperatures for growth are 40 and 80°C, respectively. The microorganism is a Gram-negative, rod-like, immobile bacterium, its characteristic feature being the ability to form long filaments (up to 200 μm long). The content of guanine and cytosine in DNA is 65.1 %. This rare endemic microorganism was isolated and described in detail in Czechoslovakia for the first time. It was included in theCzechoslovak Collection of Microorganisms of the Masaryk University in Brno and is available under the catalog number of CCM 4167. Translated by Č. Novotny  相似文献   

16.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

17.
Artificial seeding of the green seaweed Monostroma for cultivation   总被引:1,自引:0,他引:1  
In Japan, the green seaweed Monostroma is an important source of humanfood. Monostroma nitidum Wittrock (Japanese name: hitoegusa) is cultivated in brackish waters and estuaries of central to southern Japan. The green seaweed Monostroma grows in the brackish water area in the upper part of the intertidal zone in the warm waters. Artificial seed culture began with the collection of many gametes in April. The resultant zygotes were allowed to adhere to plastic settlement boards (20 cm long and 10 cm wide). The zygoteboards were then cultured in tanks (1 ×2 ×0.5 m) with fertiliser in a controlled growth room (10–87 μmol photon m-2s-1). The cultivated zygotes on the board in the indoor tanks gradually increased in size from 10 to 40 μm in diameter during May to early August. Zygote growth became slowed at the end of August. The zygotesmatured in early September, and the plates were transferred into culture tanks in a dark room for dark treatment. Maturation of the zygote was promoted by providing dark conditions for two weeks. The production of a concentrated zoospore solution from the mature blades was achieved by adding fresh water at temperature 2–3 °C above that of the seeding vats. Zoospores were released in large numbers when exposed to strong irradiance of 100 μmol photon m-2 s-1 for 30 min. The zygotes produced flat unicellular fronds at the germling stage. The technology of artificial seed culture and zoospore release from the zygotes is based mainly on these experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of 24-epibrassinolide (BR27) on cold resistance of rape seedlings was studied by ion leakage and photosynthetic pigment degradation measurements. Aqueous solutions of BR27 were injected into cotyledons or primary leaves of rape plants and these plants were incubated at 2 °C or 20 °C. Cold treatment (2 °C) without BR27 injection elevated the membrane permeability in both primary leaves and cotyledons significantly. Surprisingly, injection of leaves with water or 0.467 % aqueous ethanol solution led to a massive increase in membrane permeability after cold stress at 2 °C. The synergistic effect of leaf infiltration and cold on permeability was abolished by 0.05 and 1.00 μM of BR27 in primary leaves and by 1.00 μM of BR27 in cotyledons. On the other hand, BR27 solutions strongly elevated the membrane permeability at 20 °C, while water and ethanol solutions brought about only negligible increases. Water or ethanol infiltrations strongly reduced the leaf contents of chlorophyll (Chl) a, Chl b and carotenoids at 2 °C but less markedly at 20 °C. However, in seedlings exposed to 2 °C pigments content was significantly higher in BR27-treated leaves as compared to water/ethanol control. There were no differences between pigment contents of leaves injected with BR27 solutions or only water/ethanol at 20 °C. The above data strongly support the stress protecting effect of BR27.  相似文献   

19.
Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 μm in diameter and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 μm in diameter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion and electron densities turned out to be equal to n i≈4×1019 cm−3 and n e≈4×1020 cm−3, respectively, and the electron temperature was T e≈40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The sources of soft X-ray emission in hydrogen-and helium-like aluminum lines were the bright spots and local objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of 1021–1022 cm−3. The possibility of both the generation of an axial magnetic field during the liner implosion and the conversion of the energy of this field into soft X-ray emission is discussed. __________ Translated from Fizika Plazmy, Vol. 28, No. 6, 2002, pp. 514–521. Original Russian Text Copyright ? 2002 by Bakshaev, Blinov, Dan'ko, Ivanov, Klír, Korolev, Kravárik, Krása, Kubeš, Tumanov, Chernenko, Chesnokov, Shashkov, Juha.  相似文献   

20.
Nianzhi Jiao  I-Hsun Ni 《Hydrobiologia》1997,352(1-3):219-230
Geographic and vertical variations of size-fractionated (0.2–1μm, 1–10 μm, and >10 μm) Chlorophyll a (Chl.a) concentration, cyanobacteria abundance and heterotrophic bacteria abundance were investigated at 13 stations from 4°S, 160°W to 30°N, 140°E in November 1993. The results indicated a geographic distribution pattern of these parameters with instances of high values occurring in the equatorial region and offshore areas, and with instance of low values occurring in the oligotrophic regions where nutrients were almost undetectable. Cyanobacteria showed the highest geographic variation(ranging from 27×103 to 16,582×103cell l-1), followed by Chl.a (ranging from 0.048 to 0.178μg l-1), and heterotrophic bacteria (ranging from2.84×103 to 6.50 ×105 cell l-1). Positive correlations were observed between nutrients and Chl.a abundance. Correspondences of cyanobacteria and heterotrophic bacteria abundances to nutrients were less significant than that of Chl.a. The total Chl.a was accounted for 1.0–30.9%, 35.9–53.7%, and 28.1–57.3% by the >10μm, 1–10 μm and 0.2–1 μm fractions respectively. Correlation between size-fractionated Chl.a and nutrients suggest that the larger the cell size, the more nutrient-dependent growth and production of the organism. The ratio of pheophytin to chlorophyll implys that more than half of the >10 μm and about one third of the 1–10 μm pigment-containing particles in the oligotrophic region were non-living fragments, while most of the 1–10 μm fraction was living cells. In the depth profiles, cyanobacteria were distributed mainly in the surface layer, whereas heterotrophic bacteria were abundant from surface to below the euphotic zone. Chl.a peaked at the surface layer (0–20 m) in the equatorial area and at the nitracline (75–100 m) in the oligotrophic regions. Cyanobacteria were not the principle component of the picoplankton. The carbon biomass ratio of heterotroph to phytoplankton was greater than 1 in the eutrophic area and lower than 1 in oligotrophic waters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号