首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Rat pheochromocytoma (PC12) cells and sympathetic neurons undergo apoptotic cell death upon withdrawal of trophic support. We have shown previously that selective cysteine aspartase (caspase) inhibitors protect PC12 cells and sympathetic neurons from such death, and that the caspase Nedd-2 is required for this type of death to occur. We now show that 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) and N α- p -tosyl- l -lysine chloromethyl ketone (TLCK), agents that inhibit another class of proteases, the trypsin-like serine proteases, also suppress cell death in this paradigm. The site of action of these agents is upstream of the caspases, because the CPP32-like and Nedd-2-cleaving activities that are induced upon withdrawal of trophic support in PC12 cells are inhibited when AEBSF and TLCK are applied to the cells. Both agents inhibit thymidine incorporation in PC12 cells at concentrations similar to those that promote survival, raising the possibility that they may promote survival in neuronal cells through inhibition of aberrant activation of cell cycle components.  相似文献   

2.
Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle.  相似文献   

3.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

4.
Bcl-2 family proteins and interleukin-1-beta converting enzyme/Caenorhabditis elegans cell death gene-3 (ICE/CED-3) family proteases (caspases) represent the basic regulators of apoptosis. However, the precise mechanism by which they interact is unclear. In this study, we found that gamma-radiation-induced apoptosis of leukemia cells was associated with activation of multiple caspases and bax up-regulation. Membrane changes and caspase activities were suppressed by specific caspase inhibitors. Similarly, the serine protease inhibitors z-Ala-Ala-Asp-cmk (AAD) and tosyl-lysine chloromethyl ketone (TLCK) also prevented caspase activation and poly(ADP-ribose) polymerase cleavage in vivo but had no effect on caspase activity in vitro. TLCK also prevented bax up-regulation as a result of its inhibitory effect on p53 function. Inhibitors of caspases and serine proteases partially prevented cell death, suggesting a caspase involvement in Bax-mediated cell death. We propose an ordering of signaling events in Bax-mediated cell death, including steps upstream and downstream of p53 and bax up-regulation.  相似文献   

5.
Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) exhibit multiple effects on cell death pathways in mammalian cells. Thus, they are able to induce apoptosis by itself or promote cell death induced by other cytotoxic stimuli [King et al., 2004; Murn et al., 2004]. On the other hand, TLCK and TPCK were reported to prevent apoptosis by inhibiting the processing of caspases in response to some cell death inducing stimuli [Stefanis et al., 1997; Jones et al., 1998]. We observed that the pretreatment of HL-60 cells with TLCK or TPCK diminished caspases 3 and -7 (DEVDase) and caspase-6 (VEIDase) activity in response to various cell death inducing stimuli such as staurosporine (STS), etoposide (ETP), or N6-(2-isopentenyl)adenosine. In addition, TLCK but not TPCK inhibited collapse of mitochondrial transmembrane potential Delta Psi m (delta psi) in dying HL-60 cells. Such effects used to be considered as protective, however, the protection was only presumable since neither TLCK nor TPCK actually prevented cells from death. Our results further indicated that serine protease inhibitors TLCK and particularly TPCK acted as efficient direct inhibitors of mature caspases. Indeed, experiments with human recombinant caspases provided unequivocal evidence that TLCK and TPCK are very potent but non-specific inhibitors of activated caspases, namely caspases 3, -6, and -7. Interestingly, TPCK exhibited similar efficiency towards human recombinant caspases to that found for panspecific caspase inhibitor Boc-D-CMK. Such properties of TLCK and TPCK, previously considered as specific inhibitors of serine proteases, might offer novel consistent explanation for several protective or protective-like effects on apoptotic cells.  相似文献   

6.
帕金森病发病机制至今未明,近几年研究发现,线粒体依赖性PCD通路的激活在PD发病过程中是不可缺少的,不同形态学表现的细胞死亡形式在帕金森病发病过程中可以共同存在,而所有的这些细胞死亡都归因于PCD共同的上游通路的激活。PCD通路不仅仅是指线粒体介导的caspase依赖性凋亡,还包括非caspase依赖性细胞非凋亡性死亡,比如细胞坏死。这不仅仅是概念上的延伸,更为我们在帕金森病神经保护性治疗上提供了更多的靶点,有助于寻求神经保护的新方法和延缓神经退行性疾病的进程.抗凋亡治疗已经成为帕金森病等神经退行性疾病治疗的新热点,已经证实,caspase抑制剂能够通过抑制caspase的激活,阻止细胞退行性病变。那么将位于caspase执行者上游的Bax作为靶点,抑制Bax的激活与转位,能够产生更为持久显著的神经保护作用。本文综述了近年来相关研究进展。  相似文献   

7.
Sympathetic neurons undergo programmed cell death (PCD) upon deprivation of nerve growth factor (NGF). PCD of neurons is blocked by inhibitors of the interleukin-1beta converting enzyme (ICE)/Ced-3-like cysteine protease, indicating involvement of this class of proteases in the cell death programme. Here we demonstrate that the proteolytic activities of the proteasome are also essential in PCD of neurons. Nanomolar concentrations of several proteasome inhibitors, including the highly selective inhibitor lactacystin, not only prolonged survival of NGF-deprived neurons but also prevented processing of poly(ADP-ribose) polymerase which is known to be cleaved by an ICE/Ced-3 family member during PCD. These results demonstrate that the proteasome is a key regulator of neuronal PCD and that, within this process, it is involved upstream of proteases of the ICE/Ced-3 family. This order of events was confirmed in macrophages where lactacystin inhibited the proteolytic activation of precursor ICE and the subsequent generation of active interleukin-1beta.  相似文献   

8.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

9.
Effective execution of apoptosis requires the activation of caspases. However, in many cases, broad-range caspase inhibitors such as Z-VAD.fmk do not inhibit cell death because death signaling continues via basal caspase activities or caspase-independent processes. Although death mediators acting under caspase-inhibiting conditions have been identified, it remains unknown whether they trigger a physiologically relevant cell death that shows typical signs of apoptosis, including phosphatidylserine (PS) exposure and the removal of apoptotic cells by phagocytosis. Here we show that cells treated with ER stress drugs or deprived of IL-3 still show hallmarks of apoptosis such as cell shrinkage, membrane blebbing, mitochondrial release of cytochrome c, PS exposure and phagocytosis in the presence of Z-VAD.fmk. Cotreatment of the stressed cells with Z-VAD.fmk and the serine protease inhibitor Pefabloc (AEBSF) inhibited all these events, indicating that serine proteases mediated the apoptosis-like cell death and phagocytosis under these conditions. The serine proteases were found to act upstream of an increase in mitochondrial membrane permeability as opposed to the serine protease Omi/HtrA2 which is released from mitochondria at a later stage. Thus, despite caspase inhibition or basal caspase activities, cells can still be phagocytosed and killed in an apoptosis-like fashion by a serine protease-mediated mechanism that damages the mitochondrial membrane.  相似文献   

10.
To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.  相似文献   

11.
Mitochondrial dysfunction and release of pro-apoptotic factors such as cytochrome c or apoptosis-inducing factor (AIF) from mitochondria are key features of neuronal cell death. The precise mechanisms of how these proteins are released from mitochondria and their particular role in neuronal cell death signaling are however largely unknown. Here, we demonstrate by fluorescence video microscopy that 8-10 h after induction of glutamate toxicity, AIF rapidly translocates from mitochondria to the nucleus and induces nuclear fragmentation and cell death within only a few minutes. This markedly fast translocation of AIF to the nucleus is preceded by increasing translocation of the pro-apoptotic bcl-2 family member Bid (BH3-interacting domain death agonist) to mitochondria, perinuclear accumulation of Bid-loaded mitochondria, and loss of mitochondrial membrane integrity. A small molecule Bid inhibitor preserved mitochondrial membrane potential, prevented nuclear translocation of AIF, and abrogated glutamate-induced neuronal cell death, as shown by experiments using Bid small interfering RNA (siRNA). Cell death induced by truncated Bid was inhibited by AIF siRNA, indicating that caspase-independent AIF signaling is the main pathway through which Bid mediates cell death. This was further supported by experiments showing that although caspase-3 was activated, specific caspase-3 inhibition did not protect neuronal cells against glutamate toxicity. In conclusion, Bid-mediated mitochondrial release of AIF followed by rapid nuclear translocation is a major mechanism of glutamate-induced neuronal death.  相似文献   

12.
The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment.  相似文献   

13.
Many cell death pathways, including apoptosis, regulated necrosis, and ferroptosis, are relevant for neuronal cell death and share common mechanisms such as the formation of reactive oxygen species (ROS) and mitochondrial damage. Here, we present the role of the actin-regulating protein cofilin1 in regulating mitochondrial pathways in oxidative neuronal death. Cofilin1 deletion in neuronal HT22 cells exerted increased mitochondrial resilience, assessed by quantification of mitochondrial ROS production, mitochondrial membrane potential, and ATP levels. Further, cofilin1-deficient cells met their energy demand through enhanced glycolysis, whereas control cells were metabolically impaired when challenged by ferroptosis. Further, cofilin1 was confirmed as a key player in glutamate-mediated excitotoxicity and associated mitochondrial damage in primary cortical neurons. Using isolated mitochondria and recombinant cofilin1, we provide a further link to toxicity-related mitochondrial impairment mediated by oxidized cofilin1. Our data revealed that the detrimental impact of cofilin1 on mitochondria depends on the oxidation of cysteine residues at positions 139 and 147. Overall, our findings show that cofilin1 acts as a redox sensor in oxidative cell death pathways of ferroptosis, and also promotes glutamate excitotoxicity. Protective effects by cofilin1 inhibition are particularly attributed to preserved mitochondrial integrity and function. Thus, interfering with the oxidation and pathological activation of cofilin1 may offer an effective therapeutic strategy in neurodegenerative diseases.Subject terms: Apoptosis, Cell death in the nervous system, Neurodegeneration  相似文献   

14.
We have previously reported that the pro-apoptotic pyrrolobenzoxazepine, PBOX-6, induces apoptosis in chronic myelogenous leukaemia (CML) cells which is accompanied by oligonucleosomal DNA fragmentation. In this study we show that PBOX-6-induced oligonucleosomal DNA fragmentation occurs in the absence of caspase and CAD activation in CML cells. Dissection of the signalling pathway has revealed that induction of apoptosis requires the upstream activation of a trypsin-like serine protease that promotes the phosphorylation and inactivation of anti-apoptotic Bcl-2. In addition, in this system chymotrypsin-like serine proteases are dispensable for high molecular weight DNA fragmentation, however are required for the activation of a relatively small manganese-dependent acidic endonuclease that is responsible for oligonucleosomal fragmentation of DNA. Furthermore, we demonstrate mitochondrial involvement during PBOX-6-induced apoptosis and suggest the existence of unidentified mitochondrial effectors of apoptosis. This work was supported by the Irish Research Council for Science, Technology and Engineering (IRCSET).  相似文献   

15.
Photoreceptor degeneration in human photoreceptor dystrophies and in the relevant animal models has been thought to be executed by one common mechanism- caspase-mediated apoptosis. However, recent experiments have challenged this concept. Gene defects or environmental stressors appear to cause oxidative stress and altered metabolism, which appear to induce caspase-dependent and caspase-independent cell death mechanisms such as the activation of cysteine-proteases, lysosomal proteases and autophagy and possibly complement-mediated lysis. In this article, we point out mechanistic parallels between these pathways and summarize our recently published investigation using a temporal analysis of the different pathways, which suggests that the noncaspase-dependent mechanisms may actively participate in the demise of the photoreceptors rather than represent a passive response of the retina to the presence of dying cells. Our investigation revealed that unless the common upstream initiator for a given photoreceptor dystrophy can be found, multiple rescue paradigms need to be used to target all active pathways.  相似文献   

16.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

17.
GABAergic striatal neurons are compromised in basal ganglia pathologies and we analysed how insult nature determined their patterns of injury and recruitment of the intrinsic mitochondrial pathway during programmed cell death (PCD). Stressors affecting targets implicated in striatal neurodegeneration [3-morpholinylsydnoneimine (SIN-1), 3-nitropropionic acid (3-NP), NMDA, 3,5-dihydroxyphenylglycine (DHPG), and staurosporine (STS)] were compared in cultured GABAergic neurons from murine striatum by analyzing the progression of injury and its correlation with mitochondrial involvement, the redistribution of intermembrane space (IMS) proteins, and patterns of protease activation. Stressors produced PCD exhibiting slow-onset kinetics with time-dependent annexin-V labeling and eventual DNA fragmentation. IMS proteins including cytochrome c were differentially distributed, although stressors except STS produced early redistribution of apoptosis-inducing factor and Omi, suggestive of early recruitment of both caspase-dependent and caspase-independent signaling. In general, Bax mobilization to mitochondria appeared to promote IMS protein redistribution. Caspase 3 activation was prominent after STS, whereas NMDA and SIN-1 produced mainly calpain activation, and 3-NP and DHPG elicited a mixed profile of protease activation. PCD and redistribution of IMS proteins in striatal GABAergic neurons were canonical and insult-dependent, reflecting differential interplay between the caspase cascade and alternate cell death pathways.  相似文献   

18.
During the initial development and maturation of an individual, the metabotropic glutamate receptor (mGluR) system becomes a necessary component for the critical integration of cellular function and plasticity. In addition to the maintenance of cellular physiology, the mGluR system plays a critical role during acute and chronic degenerative disorders of the central nervous system. By coupling to guanosine-nucleotide-binding proteins (G-proteins), the mGluR system employs a broad range of signal transduction systems to regulate cell survival and injury. More commonly, it is the activation of specific mGluR subtypes that can prevent programmed cell death (PCD) consisting of two distinct pathways of genomic DNA degradation and membrane phosphatidylserine (PS) residue exposure. To offer this cellular protection, mGluRs modulate a series of down-stream cellular pathways that include protein kinases, mitochondrial membrane potential, cysteine proteases, intracellular pH, endonucleases, and mitogen activated protein kinases. Prevention of cellular injury by the mGluR system is directly applicable to clinical disability, since immediate and delayed injury paradigms demonstrate the ability of this system to reverse PCD in both neuronal and vascular cell populations. Further understanding of the intricate pathways that determine the protective nature of the mGluR system will provide new therapeutic avenues for the treatment of neurodegenerative disorders.  相似文献   

19.
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.  相似文献   

20.
Historically, two main forms of cell death have been distinguished: apoptosis and necrosis. Apoptosis was initially considered as the only physiological and programmed form of cell death. This type of death is recurrently associated with caspases, a family of cysteine proteases activated in apoptotic conditions. However, it is now widely recognized that programmed cell death (PCD) can also occur in the complete absence of caspase activation. The existence of non-caspase PCD pathways was corroborated by the discovery of caspase-independent executioners, such as the mitochondrial protein Apoptosis-Inducing Factor (AIF). Necrosis has often been viewed as an accidental and uncontrolled cell death process. Nevertheless, increasing evidence shows that, like apoptosis, necrosis could be a highly regulated type of PCD. Indeed, apoptosis and necrosis present more similarities than it has been originally thought. Here, we summarize the different classifications of PCD and the current knowledge of a necrotic PCD pathway mediated by AIF: alkylating DNA-damage mediated death. We also outline the molecular mechanisms controlling this form of PCD and discuss their potential relevance in physiological and pathological settings. These emerging data on the molecular mechanisms regulating programmed necrosis may certainly have potent therapeutic consequences in treating both apoptotic-resistant tumors and degenerating adult neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号