首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodiola sachalinensis is widely used in traditional Chinese medicine, and salidroside and polysaccharides are its important bioactive compounds. This study used airlift bioreactor systems to produce mass bioactive compounds through callus culture. Several factors affecting callus biomass and bioactive compound accumulation were investigated. Callus growth was vigorous in a bioreactor system, and the growth ratio was 2.8-fold higher in bioreactor culture than in agitated-flask culture. Callus biomass and polysaccharide content were favorable at 0.1 air volume per culture volume per min (vvm), whereas favorable salidroside content was observed at a high air volume (0.2 vvm). The maximum yields of salidroside (7.90 mg l?1) and polysaccharide (2.87 g l?1) were obtained at 0.1 vvm. Inoculum density greatly affected callus biomass and bioactive compound accumulation, and the highest biomass and contents or yields of salidroside and polysaccharide were determined at a high inoculum density of 12.5 g l?1. The level of hydrogen ion concentration (pH) at 5.8 improved callus biomass accumulation. Acidic medium (pH 4.8) stimulated salidroside synthesis but higher pH level (7.8) promoted polysaccharide accumulation. The highest yields of both bioactive compounds were obtained at pH 5.8. Methyl jasmonate (MeJA) participated in synthesis promotion of bioactive compounds, and the contents and yields of salidroside [4.75 mg g?1 dry weight (DW), 58.43 mg l?1] and polysaccharides (392.41 mg g?1 DW, 4.79 g l?1) were at maximum at 125 and 150 μmol of MeJA. Therefore, bioreactor systems can be used to produce R. sachalinensis bioactive compounds, and callus culture in a bioreactor can be as an alternative method for supplying materials for commercial drug production.  相似文献   

2.
An effective protocol was developed for in vitro propagation of Psoralea corylifolia via somatic embryogenesis in cell suspension culture. Embryogenic callus was obtained on Murashige and Skoog (MS) medium supplemented with 6 μM naphthaleneacetic acid (NAA) and 30 μM glutamine from transverse TCLs from 10-day-old hypocotyl explants with a 96.4% frequency. Embryogenic callus produced a higher number of somatic embryos (123.7 ± 1.24 per gram fresh weight callus) on MS medium containing 30 g l?1 sucrose, 1 μM NAA, 4 μM benzyladenine (BA), 15 μM glutamine and 2 μM abscisic acid (ABA) after 4 weeks of culture. Somatic embryos successfully germinated (97.6%) on ½ MS medium containing 20 g l?1 sucrose, 8 g l?1 agar and supplemented with 2 μM BA, 1 μM ABA and 2 μM gibberellic acid (GA3) within 2 weeks of culture. Somatic embryos developed into normal plants, which hardened with 100% efficiency in soil in a growth chamber. Plants were successfully transferred to greenhouse and subsequently established in the field. Plant survival percentage in the field differed with seasonal variations. Average psoralen content of 12.9 μg g?1 DW was measured in different stages of somatic embryo development by high-performance liquid chromatography (HPLC). This protocol will be helpful for efficient propagation of elite clones on a mass scale, conservation efforts of this species and for secondary metabolites production studies.  相似文献   

3.
Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549?±?0.044 g L?1) than in BG11 (0.336?±?0.009 g L?1). On the contrary, the biomass production was found to be higher in BG11 (1.019?±?0.051 g L?1) than in the D medium (0.953?±?0.056 g L?1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm?1) which may mean a difference in glycosyl composition.  相似文献   

4.
The present study designed two sets of experiments by using the uniform design method and investigated the effects of medium components on the accumulation of bioactive compounds (polysaccharide and kinsenoside) in rhizomes, in order to select a suitable culture medium for the rhizome suspension culture of Anoectochilus roxburghii (Wall.) Lindl. Among the combinations of Murashige and Skoog (MS) medium strengths and plant growth regulator (benzylaminopurine, BA; kinetin, KT; and α-naphthaleneacetic acid, NAA) concentrations, and the combinations of nitrogen, phosphorus, and sucrose concentrations, the maximum yield of polysaccharides and kinsenoside was achieved with 0.75 × MS?+?2.0 mg L?1 BA?+?0.2 mg L?1 KT?+?0.5 mg L?1 NAA and 45 mM nitrogen?+?0.93 mM phosphorus?+?35 g L?1 sucrose, respectively. Therefore, the optimal rhizome suspension culture medium was 0.75 × MS medium supplemented with 2.0 mg L?1 BA, 0.2 mg L?1 KT, 0.5 mg L?1 NAA, and 35 g L?1 sucrose. Yeast extract (YE) enhanced bioactive compound accumulation in rhizomes. The polysaccharide and kinsenoside production was significantly improved when 75 mg L?1 YE was added to the culture medium after 30 d of rhizome suspension culture; 8.3 g L?1 of polysaccharide and 6.1 g L?1 of kinsenoside were obtained after 4 d of YE treatment. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of YE-treated rhizomes was higher than that of YE-untreated rhizomes, demonstrating enhanced antioxidant activity of the treated bioreactor-cultured rhizomes.  相似文献   

5.
A practical and reliable method for in vitro tetraploidization of Sphagneticola calendulacea (L.) Pruski [synonym Wedelia chinensis (Osbeck) Merrill] has been established to enhance the production of wedelolactone. Shoot tip and nodal explants from in vitro-grown culture (2n?=?50) were exposed to the antimitotic chemical, i.e., colchicine, at various concentrations (0, 0.025, 0.05, 0.1, 0.3, and 0.5%; w/v) for 12, 24, 36, 48, and 60 h. The treated explants were then incubated and proliferated on Murashige and Skoog (MS) medium fortified with 0.2 mg l?1 thidiazuron and 0.05 mg l?1 naphthalene acetic acid, followed by root induction in 1.0 mg l?1 indole-3 acetic acid enriched ½MS medium. Treatment of shoot tips with 0.05% colchicine for 24 h supported the maximum rate of survival (63.33%) of explants as well as tetraploid induction (42.93%). Morphological, stomatal, and cytological characteristics along with the secondary metabolite content of the in vitro tetraploids were compared to that of diploids. The recovered tetraploid plants possessed superior plant height, stem diameter, leaf size, root number, and increased length and width of stomata but decreased stomatal frequency. The tetraploid plants demonstrated twice the chromosome number (2n?=?4x?=?100) than the diploids as confirmed through cytology, spectrophotometry and flow cytometry. High-performance thin-layer chromatography showed a significant enhancement in the wedelolactone content of tetraploid plants (541.48 µg g?1 of dried sample) in comparison to diploid plants (325.43 µg g?1 of dried sample), signifying the prospective of this technique for the trade value improvement.  相似文献   

6.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

7.
8.
l-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the l-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for l-malic acid biosynthesis. Second, the l-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the l-malic acid efflux system. Finally, the l-malic acid pathway was optimized by controlling gene expression levels, and the final l-malic acid concentration, yield, and productivity were up to 30.25 g L?1, 0.30 g g?1, and 0.32 g L?1 h?1 in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L?1, 0.31 g g?1, and 0.32 g L?1 h?1, respectively. The metabolic engineering strategy used here will be useful for efficient production of l-malic acid and other chemicals.  相似文献   

9.

Objective

To produce δ-decalactone from linoleic acid by one-pot reaction using linoleate 13-hydratase with supplementation with whole Yarrowia lipolytica cells.

Results

Whole Y. lipolytica cells at 25 g l?1 produced1.9 g l?1 δ-decalactone from 7.5 g 13-hydroxy-9(Z)-octadecenoic acid l?1 at pH 7.5 and 30 °C for 21 h. Linoleate 13-hydratase from Lactobacillus acidophilus at 3.5 g l?1 with supplementation with 25 g Y. lipolytica cells l?1 in one pot at 3 h produced 1.9 g l?1 δ-decalactone from 10 g linoleic acid l?1 via 13-hydroxy-9(Z)-octadecenoic acid intermediate at pH 7.5 and 30°C after 18 h, with a molar conversion yield of 31 % and productivity of 106 mg l?1 h?1.

Conclusion

To the best of our knowledge, this is the first production of δ-decalactone using unsaturated fatty acid.
  相似文献   

10.
Airlift bioreactors were programmed for continuous and temporary immersion culture to investigate factors that affect the rhizome proliferation, shoot formation, and plantlet regeneration of Cymbidium sinense. During rhizome proliferation, the continuous immersion bioreactor system was used to explore the effects of activated charcoal (AC) in the culture medium, inoculation density, and air volume on rhizome differentiation and growth. The optimum conditions for obtaining massive health rhizomes were 0.3 g l?1 AC in the culture medium, 7.5 g l?1 inoculation density, and 150 ml min?1 air. In addition, the temporary immersion bioreactor system was used for both shoot formation and plantlet regeneration. Supplementing 4 mg l?1 6-benzylaminopurine and 0.2 mg l?1 naphthalene acetic acid (NAA) to the culture medium promoted shoot induction from the rhizome. Cutting the rhizome explants into 1 cm segments was better for massive shoot formation than cutting into 0.25 and 0.5 cm explant segments. NAA promoted plantlet regeneration and the rooting rate (94.7 %), with whole plantlets growing well in culture medium containing 1.0 mg l?1 NAA. Therefore, applying bioreactors in C. sinense micropropagation is an efficient way for scaling up the production of propagules and whole plantlets for the industrial production of high-quality seedlings.  相似文献   

11.
To assess the potential of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.) to somatic embryogenesis and somatic embryo proliferation, mature zygotic embryos of nine commercial genotypes of E. guineensis (BRSC2001, BRSC2328, BRSC2301, BRSC3701, BRSCM1115, BRSC7201, BRSC2528, BRSC2501, and BRSCN1637) were used. Explants were incubated on Murashige and Skoog (MS) supplemented with 450 μM picloram, 3.0 % sucrose, 500 mg l?1 glutamine, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. After induction, for differentiation and maturation, the embryogenic calli (ECs) were transferred into fresh medium supplemented with 0.6 μM naphthaleneacetic acid (NAA) and 12.30 μM 2-isopentenyladenine (2iP) or 40 μM picloram in combination with 0.3 g l?1 activated charcoal, and 500 mg l?1 glutamine. Somatic embryos were converted into plants on MS medium with macro- and micro-nutrients at half strength, 2 % sucrose, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. In general, zygotic embryos swelled after 14 days. Primary calli, which were observed in all the genotypes after 45–60 days of culture, eventually progressed to ECs at 90 days. At this time, scanning electron microscopy (SEM) analysis showed cellular differences between compact and friable calli. After 150 days in the induction phase, the ECs with proembryos that were transferred to the medium for differentiation and maturation, differentiated asynchronically into somatic embryos at globular and torpedo stages. The results showed that BRSC2328 and BRSCM1115 had the highest potential for EC formation (90–100 %) and somatic embryo differentiation (40.7 and 52.5 somatic embryos per callus, respectively) when compared to other genotypes. After approximately 90 days of culture on MS basal medium without growth regulators, protrusion of the leaf primordia was observed, characterizing the onset of germination of the somatic embryos into plants.  相似文献   

12.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

13.
Mutants of Candida magnoliae NCIM 3470 were generated by treatment of ultra-violet radiations, ethyl methyl sulphonate and N-methyl-N′-nitro-N-nitrosoguanidine. Mutants with higher reductase activity were screened by means of 2,3,5-triphenyl tetrazolium chloride agar plate assay. Among the screened mutants, the mutant R9 produced maximum mannitol (i.e. 46 g l?1) in liquid fermentation medium containing 250 g l?1 glucose and hence was selected for further experiments. Preliminary optimization studies were carried out on shake-flask level which increased the mannitol production to 60 g l?1 in liquid fermentation medium containing 300 g l?1 glucose. A two-stage fermentation process comprising of growth phase and production phase was employed. During the growth phase, glucose was supplemented and aerobic conditions were maintained. Thereafter, the production phase was initiated by supplementing fructose and switching to anaerobic conditions by discontinuing aeration and decreasing the speed of agitation. The strategy of two-stage fermentation significantly enhanced the production of mannitol up to 240 g l?1, which is the highest among all fermentative production processes and corresponds to 81 % yield and 4 g l?1 h?1 productivity without formation of any by-product.  相似文献   

14.

Background

Corn stover, as one important lignocellulosic material, has characteristics of low price, abundant output and easy availability. Using corn stover as carbon source in the fermentation of valuable organic chemicals contributes to reducing the negative environmental problems and the cost of production. In ethanol fermentation based on the hydrolysate of corn stover, the conversion rate of fermentable sugars is at a low level because the native S. cerevisiae does not utilize xylose. In order to increase the conversion rate of fermentable sugars deriving from corn stover, an effective and energy saving biochemical process was developed in this study and the residual xylose after ethanol fermentation was further converted to l-lactic acid.

Results

In the hybrid process based on the hydrolysate of corn stover, the ethanol concentration and productivity reached 50.50 g L?1 and 1.84 g L?1 h?1, respectively, and the yield of ethanol was 0.46 g g?1. The following fermentation of l-lactic acid provided a product titer of 21.50 g L?1 with a productivity of 2.08 g L?1 h?1, and the yield of l-lactic acid was 0.76 g g?1. By adopting a blank aeration before the inoculation of B. coagulans LA1507 and reducing the final cell density, the l-lactic acid titer and yield reached 24.25 g L?1 and 0.86 g g?1, respectively, with a productivity of 1.96 g L?1 h?1.

Conclusions

In this work, the air pumped into the fermentor was used as both the carrier gas for single-pass gas stripping of ethanol and the oxygen provider for the aerobic growth of B. coagulans LA1507. Ethanol was effectively separated from the fermentation broth, while the residual medium containing xylose was reused for l-lactic acid production. As an energy-saving and environmental-friendly process, it introduced a potential way to produce bioproducts under the concept of biorefinery, while making full use of the hydrolysate of corn stover.
  相似文献   

15.
An efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from immature zygotic embryos of açaí palm (Euterpe oleracea) has been developed. Embryogenic calli (ECs) were induced from immature zygotic embryos of açaí palm on Murashige and Skoog (MS) modified medium with 2,4-dichlorophenoxyacetic acid and picloram. Embryogenic frequency was dependent on auxin type and concentration. The optimal concentration of picloram for the high-frequency induction of embryogenic calli (72%) was 225 μM. ECs were then subcultured on a differentiation and maturation medium composed of MS modified medium with 2-isopentenyladenine and naphthaleneacetic acid with subcultures at 4-week intervals. SEs were converted to plants on MS modified medium with half-strength macro- and micronutrients, 20 g l?1 sucrose, and 2.5 g l?1 activated charcoal and gelled with 2.5 g l?1 Phytagel. Detailed morpho anatomical changes during the different stages of somatic embryogenesis were characterized. The development of SEs was asynchronous, and ontogenic studies confirmed that the initial cell divisions occur in the epidermal and subepidermal regions of the zygotic embryos. Broad base attachment of SEs to the epidermis indicates the presence of a suspensor.  相似文献   

16.

Objectives

To enhance the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from phytosterols, a phytosterol transport system was constructed in Mycobacterium sp. strain MS136.

Results

9-OHAD can be produced via the controlled degradation of phytosterols by mycobacteria. This involves an active transport process that requires trans-membrane proteins and ATP. A phytosterol transport system from Mycobacterium tuberculosis H37Rv was constructed in Mycobacterium sp. strain MS136 by co-expression of an energy-related gene, mceG, and two integrated membrane protein genes, yrbE4A and yrbE4B. The resultant of the Mycobacterium sp. strain MS136-GAB gave 5.7 g 9-OHAD l?1, which was a 20% increase over 4.7 g l?1 by the wild-type strain. The yield of 9-OHAD was increased to 6.0 g l?1 by optimization of fermentation conditions, when 13 g phytosterols l?1 were fermented for 84 h in 30 ml biotransformation medium in shake flasks.

Conclusions

Phytosterol transport system plays an active role in the uptake and transport of sterols, cloning of the system improved the mass transfer of phytosterols and increased the production of 9-OHAD.
  相似文献   

17.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

18.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

19.
The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, l-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L?1 h?1 of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .  相似文献   

20.

Purpose of work

To establish pilot scale bioreactor cultures of somatic embryos of Siberian ginseng for the production of biomass and eleutherosides. Somatic embryos of Eleutherococcus senticosus were cultured in airlift bioreactors using Murashige and Skoog medium with 30 g sucrose l?1 for the production of biomass and eleutherosides. Various parameters including the type of bioreactor, aeration volume, and inoculum density were optimized for 3 l capacity bioreactors. Balloon-type airlift bioreactors, utilizing a variable aeration volume of 0.1–0.3 vvm and an inoculum of 5 g l?1, were suitable for biomass and eleutheroside production. In 500 l balloon-type airlift bioreactors, 11.3 g dry biomass l?1, 220 µg eleutheroside B l?1, 413 µg eleutheroside E l?1, and 262 µg eleutheroside E1 l?1 were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号