首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite their recognized importance in the literature, the contribution of native-range species interactions to invasion success has been inadequately studied. Previous authors have suggested that biases in the sampling of propagules from the native range might influence invasion success, but most contemporary invasion hypotheses focus on the development of novel interactions or a release from native consumers and competitors. When ecotypic variation exists in native host-consumer associations, the specific pattern of sampling across ecotypes could determine invasion success, especially when the genetic diversity among exotic propagules is low. The South American cactus moth, Cactoblastis cactorum (Berg), is an oligophagous consumer whose larvae feed on prickly pear cacti (subfamily Opuntioideae). The moth was collected from a small geographic area along the Argentina-Uruguay border in 1925 and was introduced to multiple continents as a biological control species, which has subsequently invaded North America. Here we show that groups defined by genetic structure in this species’ native range are concordant with distinct patterns of host association and larval morphology. Furthermore, in Florida populations, morphological traits have diverged from those found in the native range, and patterns of host association suggest that strong biases in host preference also occur in invasive populations. The documented history of C. cactorum introductions confirms that multiple attempts were made to export the moth, but that only a single ecotype was exported successfully. Additional work will be necessary to determine whether the observed host biases in North America reflect a rapid adaptation to naïve hosts or a conservation of traits related to specific aspects of the host-consumer association.  相似文献   

2.
Spread of the invasive cactus-feeding moth Cactoblastis cactorum has been well documented since its export from Argentina to Australia as a biocontrol agent, and records suggest that all non-native populations are derived from a single collection in the moth’s native range. The subsequent global spread of the moth has been complex, and previous research has suggested multiple introductions into North America. There exists the possibility of additional emigrations from the native range in nursery stock during the late twentieth century. Here, we present mitochondrial gene sequence data (COI) from South America (native range) and North America (invasive range) to test the hypothesis that the rapid invasive spread in North America is enhanced by unique genetic combinations from isolated portions of the native range. We found that haplotype richness in the native range of C. cactorum is high and that there was 90% lower richness in Florida than in Argentina. All Florida C. cactorum haplotypes are represented in a single, well-defined clade, which includes collections from the reported region of original export from Argentina. Thus, our data are consistent with the documented history suggesting a single exportation of C. cactorum from the eastern region of the native range. Additionally, the presence of geographic structure in three distinct haplotypes within the same clade across Florida supports the hypothesis of multiple introductions into Florida from a location outside the native range. Because the common haplotypes in Florida are also known to occur in the neighboring Caribbean Islands, the islands are a likely source for independent North American colonization events. Our data show that rapid and successful invasion within North America cannot be attributed to unique genetic combinations. This suggests that successful invasion of the southeastern US is more likely the product of a fortuitous introduction into favorable abiotic conditions and/or defense responses of specific Opuntia hosts, rapid adaptation, or a release from native enemies.  相似文献   

3.
Host range expansion of herbivorous insects is a key event in ecological speciation and insect pest management. However, the mechanistic processes are relatively unknown because it is difficult to observe the ongoing host range expansion in natural population. In this study, we focused on the ongoing host range expansion in introduced populations of the ragweed leaf beetle, Ophraella communa, to estimate the evolutionary process of host plant range expansion of a herbivorous insect. In the native range of North America, O. communa does not utilize Ambrosia trifida, as a host plant, but this plant is extensively utilized in the beetle's introduced range. Larval performance and adult preference experiments demonstrated that native O. communa beetles show better survival on host plant individuals from introduced plant populations than those from native plant populations and they also oviposit on the introduced plant, but not on the native plant. Introduced O. communa beetles showed significantly higher performance on and preference for both introduced and native A. trifida plants, when compared with native O. communa. These results indicate the contemporary evolution of host plant range expansion of introduced O. communa and suggest that the evolutionary change of both the host plant and the herbivorous insect involved in the host range expansion.  相似文献   

4.
This study examined the effects of the native cactus moth borer, Melitara prodenialis, and the invasive cactus moth borer, Cactoblastis cactorum, on two common cactus species, Opuntia stricta and O. humifusa at coastal and inland locations in central Florida. Opuntia stricta were present only at coastal sites and O. humifusa were present at coastal and inland sites. Throughout the duration of the study, coastal plants were subject to damage solely by C. cactorum and inland plants solely by M. prodenialis. Results showed marginally significantly higher numbers of eggsticks on O. stricta than O. humifusa and significantly higher numbers at coastal sites than at inland sites. There was also significantly higher moth damage on O. stricta than O. humifusa and at coastal sites than inland sites, but not significantly so. However, there was a higher level of plant mortality for O. humifusa than for O. stricta and a significantly higher level of cactus mortality at inland sites when compared to coastal sites. This increased mortality may be due to increased attack by true bugs, Chelinidea vittiger, and by Dactylopius sp., combined with attack by M. prodenialis. Inland plants also tended to be smaller than coastal plants and could be more susceptible to the combined effects of all insects. Further long-term research on coastal cactus survival when attacked and unattacked by Cactoblastis is necessary to fully determine the effects of this moth on Opuntia survival.  相似文献   

5.
H. G. Robertson 《Oecologia》1987,73(4):601-608
Summary Oviposition by Cactoblastis cactorum on Opuntia ficus-indica and O. aurantiaca was assessed from the positioning of egg sticks on plants in the field. The number of egg sticks laid on O. ficus-indica plants was affected by: (1) plant size; (2) moth emergence near the plant; (3) cladode condition; and (4) plant conspicuousness. These factors contributed towards the clumping of egg sticks on plants. There was no apparent oviposition preference for one of the two host plant species despite the fact that egg predation was higher and fecundity lower on O. aurantiaca. The selection of a site for oviposition on the host plants was influenced by: (1) cladode condition; (2) height above ground; and (3) shelter from wind during oviposition. Succulent cladodes were the favoured sites for oviposition. The evidence suggests that in C. cactorum, oviposition site selection is largely the net result of a compromise between oviposition behaviour selected for increasing the probability of juvenile survival and oviposition behaviour selected for increasing the probability of laying the full complement of eggs. In addition, environmental and physiological factors such as wind and wing-loading, are thought to place constraints on the range of sites available for oviposition.  相似文献   

6.
Understanding the influence of resident species on the success of invaders is a core objective in the study and management of biological invasions. We asked whether facultative food-for-protection mutualism between resident, nectar-feeding ants and extrafloral nectar-bearing plants confers biotic resistance to invasion by a specialist herbivore. Our research focused on the South American cactus-feeding moth Cactoblastis cactorum Berg (Lepidopetra: Pyralidae) in the panhandle region of Florida. This species has been widely and intentionally redistributed as a biological control agent against weedy cacti (Opuntia spp.) but arrived unintentionally in the southeast US, where it attacks native, non-target cacti and is considered a noxious invader. The acquired host-plants of C. cactorum in Florida secrete extrafloral nectar, especially on young, vegetative structures, and this attracts ants. We conducted ant-exclusion experiments over 2 years (2008 and 2009) at two sites using potted plants of two vulnerable host species (O. stricta and O. ficus-indica) to evaluate the influence of cactus-visiting ants (total of eight species) at multiple points in the moth life cycle (oviposition, egg survival, and larval survival). We found that the presence of ants often increased the mortality of lab-reared C. cactorum eggsticks (stacks of cohered eggs) and larvae that we introduced onto plants in the field, although these effects were variable across sites, years, host-plant species, ant species, and/or between old and young plant structures. In contrast to these “staged” encounters, we found that ants had little influence on the survival of cactus moths that occurred naturally at our field sites, or on moth damage and plant growth. In total, our experimental results suggest that the influence of cactus-visiting ants on C. cactorum invasion dynamics is weak and highly variable.  相似文献   

7.
Surveys of patterns of genetic variation in natural sympatric and allopatric populations of recently diverged species are necessary to understand the processes driving intra- and interspecific diversification. The South American moths Cactoblastis cactorum, Cactoblastis doddi and Cactoblastis bucyrus are specialized in the use of cacti as host plants. These species have partially different geographic ranges and differ in patterns of host plant use. However, there are areas that overlap, particularly, in northwestern Argentina, where they are sympatric. Using a combination of genome-wide SNPs and mitochondrial data we assessed intra and interspecific genetic variation and investigated the relative roles of geography and host plants on genetic divergence. We also searched for genetic footprints of hybridization between species. We identified three well delimited species and detected signs of hybridization in the area of sympatry. Our results supported a hypothetical scenario of allopatric speciation in the generalist Ccactorum and genetic interchange during secondary geographic contact with the pair of specialists Cbucyrus and Cdoddi that probably speciated sympatrically. In both cases, adaptation to new host plants probably played an important role in speciation. The results also suggested the interplay of geography and host plant use as drivers of divergence and limiting gene flow at intra and interspecific levels.  相似文献   

8.
Cactoblastis cactorum's unintended arrival to Florida and its expansion in North America represent a threat to Opuntia-based agriculture and natural ecosystems in the United States and Mexico. Apanteles opuntiarum attacks C. cactorum and is a potential biocontrol agent due to its specificity, wide distribution and occurrence. Laboratory rearing methods using excised cladodes for C. cactorum as host larvae of A. opuntiarum were developed, but require a continuous supply of cactus with a risk of microorganisms compromising the rearing. Host cues —including odour of host metabolic subproducts like faeces and chemicals emitted by the attacked plant— are the most important signals that help a parasitoid locate a host. Little attention has been paid to behavioural differences of parasitoids in the presence of hosts reared on artificial diet. Thus, the aims of the present work were to determine the effect of meridic diet for C. cactorum on parasitoid behaviour and to determine whether prior experience (previous exposure to stimuli) influences the response of A. opuntiarum towards hosts. Parasitism rates were assessed using cladodes or meridic diet as larvae food source. Behavioural experiments also evaluated the effect of prior experience (larvae or frass from larvae fed on cactus or diet) on host searching, encounter and attack of different stimulus (larvae or frass from larvae fed on cactus or diet). Parasitism behaviour of A. opuntiarum was negatively affected by the use of meridic diet to feed host larvae. Presenting parasitoids with larvae rather than their frass influenced excitatory behavioural responses in terms of contact, probing and stinging in A. opuntiarum females, whereas the effect of prior experience on the behaviours was not quite consistent. For laboratory mass-rearing procedures of A. opuntiarum, we recommend previous contact of females with frass from cactus-fed larvae and a piece of cactus, which showed enhanced parasitism rates.  相似文献   

9.
Understanding and interpreting the host plant interactions of “generalist” herbivorous insects requires that species limits are accurately defined, as such taxa frequently harbour cryptic species with restricted host use. We tested for the presence of cryptic species across different host plant species in Australian Frankliniella schultzei using a combination of gene sequencing and newly developed microsatellite markers. We detect deep divergence between three colour morphs (black, brown and yellow) but no discordance between mitochondrial and nuclear genes in areas of sympatry, indicating the presence of at least three species in Australia (and potentially six globally). Microsatellite markers were developed for the brown species but could not be amplified in the black or yellow species because the divergence between them is too great. When applied to six populations across Queensland and New South Wales the microsatellites showed high levels of gene flow across thrips collected from Gossypium hirsutum (cotton), Hibiscus rosa-sinensis and Malvaviscus arboreus, and over distances of at least 950 km, indicating considerable movement by these insects and no host-associated genetic differentiation in the brown species. Significantly, the divergence between the three species in Australia was not associated with any noticeable host specialisation. The substantial overlap in geographical distribution and host plant range raises questions about the process of speciation in generalist insects. Our results provide the basis from which detailed quantification of relative host use can be conducted for each species within the F. schultzei complex; this next step is crucial to fully understanding the host plant relationships of each and, thus, the basis of their speciation.  相似文献   

10.
Gert Stange 《Oecologia》1997,110(4):539-545
Sensory organs that detect CO2 are common in herbivorous moths and butterflies, but their function has been unclear until now. As the CO2 gradients in the vicinity of a host plant depend on its physiological condition, CO2 could provide a sensory cue for the suitability of the plant as a larval food source. This study investigated whether changing the atmospheric CO2 concentration affected oviposition by Cactoblastis cactorum on its host, the cactus Opuntia stricta. On host plants exposed to rapid fluctuations in CO2 concentration, the frequency of oviposition was reduced by a factor of 3.2 compared to the control. As the fluctuations mask the much smaller CO2 signals generated by the plants, this suggests that those signals constitute an important component of the host identification process. On host plants exposed to a constant background of doubled CO2, oviposition was also reduced, by a factor of 1.8. An increased background reduces host signal detectability, partially as a consequence of a general principle of sensory physiology (Weber-Fechner's law), and partially due to other factors specific to CO2-receptor neurons. Received: 4 October 1996 / Accepted: 16 January 1997  相似文献   

11.
The interaction between the moth, Cactoblastis cactorum, and the cactus, Opuntia stricta, is used as a model to examine the question of whether the CO2 sense of a herbivorous insect can detect the CO2 gradients associated with a plant's metabolic activity. Both the anatomical and the electrophysiological characteristics of CO2-sensitive receptor neurons in C. cactorum indicate an adaptation to the detection of small fluctuations around the atmospheric background. Evidence is provided that further rises in background will impair the function of the sensory organ. In the habitat of the plant, during the diurnal window of the moth's activity, two types of CO2 gradients occur that are detectable by the moth's sensors. The first gradient, associated with soil respiration, is vertical and extends from the soil surface to an altitude of approximately 1 m. Its magnitude is well above the detectability limit of the sensors. The notion that this gradient provides, to a flying insect, a cue for the maintenance of a flight altitude favourable for host detection is supported by field observations of behaviour. The second gradient, associated with CO2 fixation by the plant, extends from the surfaces of photosynthetic organs (cladodes) over a boundary layer distance of approximately 5 mm. Again, its magnitude is well above the detectability limit. The notion that this gradient provides, to a walking insect, a cue to the physiological condition of the plant is supported by the observation that females of C. cactorum, prior to oviposition, actively probe the plant surface with their CO2 sensors. In a simulation of probing, pronounced responses of the sensors to the CO2-fixing capacity of O. stricta are observed. We propose that by probing the boundary layer, females of C. cactorum can detect the healthiest, most active O. stricta cladodes, accounting for earlier observations that the most vigorous plants attract the greatest density of egg sticks.  相似文献   

12.
13.
ACactoblastis sp. was found on Harrisia cactus (Eriocereus martinii Lab.) in north-eastern Argentina. In biology and life history it is similar toCactoblastis cactorum (Berg.) though attacking different cacti. Laboratory tests and field observations demonstrate that it will only damage plants in the sub-tribeCereanae of theCactaceae. It was approved for liberation in Queensland, Australia in August 1975 for the control ofEriocereus spp., and field releases were made in October 1978.  相似文献   

14.
It is well known that herbivorous insects respond to host plant volatiles. Yet details of how these insects perceive the complex profile of volatiles from different potential host plants have not been studied for most insects. Gonipterus spp. are important pests of Eucalyptus worldwide, but differ in their preference for different species of this host. In this study, we consider whether host volatiles affect the host choice for a Gonipterus sp. and we characterize the response of the female insect to the volatile profiles from these hosts in an electro-antennographic experiment. We sampled volatiles from freshly damaged leaves of three Eucalyptus species and analysed the profiles by gas chromatography coupled to electro-antennography (GC-EAD) and gas chromatography coupled to mass spectrometry. Female weevils gave a mixed range of electro-physiological responses to volatile puffs from leaves of different tree species. This suggests that differences in volatile profiles of different trees play a role in how these beetles discriminate between potential hosts. GC-EAD analysis showed that responses were as complex as the volatile chemical compositions of the leaves. A number of these chemicals were identified, and responses were mostly due to general green leaf volatiles. This was also evident from the fact that the insects showed a markedly greater response to the total volatile profile from freshly damaged leaves for all species. The females of the Gonipterus sp. can therefore detect damaged leaves, which may indicate host quality. Host specificity information is further expected to lie in the relative differences in emission ratios and synergism between different host chemical compounds, rather than specific individual compounds.  相似文献   

15.
The moth Cactoblastis cactorum (Berg), the poster child of weed biological control in Australia, has recently invaded the United States and threatens native cacti. Concern is greatest for the endangered semaphore cactus, Opuntia corallicola, of which only two known populations exist in the wild. We made three separate outplantings of O. corallicola, designed to bolster the number of extant cacti and to test the effectiveness of three different treatments to protect the cacti from Cactoblastis. In one outplanting, we tested the associational susceptibility hypothesis and found that cacti planted more than 20 m away from the common prickly pear cactus, Opuntia stricta, which act as a reservoir of Cactoblastis, were just as frequently attacked and killed by Cactoblastis as cacti planted within 5 m. In addition, Cactoblastis attack was greater in the shade than in the sun. In the second outplanting, we minimized the attack from Cactoblastis by using protective cages planted at least 500 m from O. stricta in areas not inhabited by cacti. Cages attracted the attention of local animals, which destroyed the cages and trampled the cacti inside to death. Crown rot caused high mortality in this outplanting. In the third outplanting, again conducted at least 500 m away from O. stricta, fertilization did not reduce crown rot mortality. We suggest that increasing populations of O. corallicola in Florida, by means of outplantings, will remain a challenge because of death from Cactoblastis when planted in areas where cacti normally grow and because of death from crown rot in areas where they do not. Because Cactoblastis is moving rapidly northward and westward and has already reached Charleston, South Carolina, rare cacti in the rest of the U.S. Southeast may be in danger. Eventually, many cactus species in the U.S. South, Southwest, and Mexico will likely be threatened by this moth.  相似文献   

16.
Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), the poster child of biological control, has recently invaded the United States. The first US record was at Big Pine Key, Florida, in 1989. Since then it has moved rapidly northward into South Carolina. Fears are high that it will disperse, either on its own, or with human help, into the US desert southwest and Mexico. There are at least 31 species of prickly pear in the US that are likely to be attacked by Cactoblastis and 56 species in Mexico. As well as the threat to wild cacti, there are over 250,000 ha of Opuntia plantations in Mexico that support a thriving agricultural industry, most of which is centered on harvesting fruits or pads. Possible control measures include classical biological control using parasitoids or pathogens from South America, chemical control or F1 sterility, as has been used successfully for the codling moth. However, most of these options appear to have insurmountable difficulties. Classical biological control raises the fear of further non-target effects of natural enemies on native cactus herbivores. Chemical control has potential non-target effects on other (rare) insects and is expensive. F1 sterility is also expensive and is not self-sustaining, requiring considerable and continual human input. Nevertheless, research on control options is vital as is further work on the rate of spread and impact of Cactoblastis in the United States Southeast, so that we can be as well prepared as possible to deal with this threat when it arrives in Arizona, California, and Mexico.  相似文献   

17.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

18.
Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), the cactus moth, is a well-known biological control agent of prickly pear cactus (Cactaceae: Opuntia Miller). The arrival of the moth in Florida and its subsequent spread through the southeastern United States poses a threat to opuntioid diversity in North America. Of particular concern are the ecological and economic impacts the moth could have in the southwestern United States and Mexico, where both native and cultivated Opuntia species are important resources. It is unknown which species would best support larval development if the moth were to spread further westward in North America. This study aimed to determine if ovipositing females demonstrate preferences for any of 14 common opuntioids native to or naturalized in Mexico and the southwestern United States; which of these opuntioids best support larval development; and if oviposition preference correlates with larval performance, as predicted by simple adaptive models. Results from a field experiment showed that female moths preferred O. engelmannii Salm-Dyck ex Engelmann variety linguiformis (Griffiths) Parfitt and Pinkava and O. engelmannii variety engelmannii for oviposition. A generalized linear model showed number of cladodes and degree of spininess to be significant predictors of oviposition activity. Results from a no-choice larval survival experiment showed Consolea rubescens (Salm-Dyck ex de Candolle.) Lemaire and O. streptacantha Lemaire to be the best hosts. Epidermal toughness was a significant predictor of most larval fitness parameters. In general, oviposition preference was not correlated with larval performance. A lack of co-evolutionary history between C. cactorum and North American opuntioid species may help explain this disconnect.  相似文献   

19.
Changes in symbiont assemblages can affect the success and impact of invasive species, and may provide knowledge regarding the invasion histories of their vectors. Bark beetle symbioses are ideal systems to study changes in symbiont assemblages resulting from invasions. The red turpentine beetle (Dendroctonus valens) is a bark beetle species that recently invaded China from its native range in North America. It is associated with ophiostomatalean fungi in both locations, although the fungi have previously been well-surveyed only in China. We surveyed the ophiostomatalean fungi associated with D. valens in eastern and western North America, and identified the fungal species using multi-gene phylogenies. From the 307 collected isolates (147 in eastern North America and 160 in western North America), we identified 20 species: 11 in eastern North America and 13 in western North America. Four species were shared between eastern North America and western North America, one species (Ophiostoma floccosum) was shared between western North America and China, and three species (Grosmannia koreana, Leptographium procerum, and Ophiostoma abietinum) were shared between eastern North America and China. Ophiostoma floccosum and O. abietinum have worldwide distributions, and were rarely isolated from D. valens. However, G. koreana and L. procerum are primarily limited to Asia and North America respectively. Leptographium procerum, which is thought to be native to North America, represented >45% of the symbionts of D. valens in eastern North America and China, suggesting D. valens may have been introduced to China from eastern North America. These results are surprising, as previous population genetics studies on D. valens based on the cytochrome oxidase I gene have suggested that the insect was introduced into China from western North America.  相似文献   

20.
The adaptation to alternate host plants of introduced herbivorous insects can be vital to agriculture due to the emergence of crop pests. Historically, it is assumed that there are trade-offs associated with the adaptation to new host plants; a generalist genotype that adapts to an alternate host is expected to have a relatively lower fitness on the ancestral host than a specialist genotype (physiological cost) or a relatively lower host-searching ability for the ancestral host plant (behavioral cost). In this study, we tested the costs of adaptation to a new host plant in the introduced herbivorous insect, Ophraella communa LeSage (Coleoptera: Chrysomelidae). In its native range (United States), O. communa feeds mostly on Ambrosia artemisiifolia L. (Asterales: Asteraceae) and cannot utilize the related species, Ambrosia trifida L. (Asterales: Asteraceae), as a host plant. On the other hand, the introduced O. communa population in Japan utilizes A. trifida extensively, and is adapting to it, both physiologically and behaviorally. We compared larval performance on the ancestral and alternate plants and adult host-searching ability between the native and introduced beetle populations. The introduced O. communa showed higher larval survival and adult feeding preference for the alternate host plant A. trifida than did the native O. communa, indicating that the introduced O. communa has rapidly adapted to the alternate host plant. However, there are no differences in either larval performance on the ancestral host A. artemisiifolia or host-searching accuracy between the native and introduced O. communa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号