首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Chromolaena odorata (L.) R. M. King and H. Robinson (Asteraceae), originally from the Neotropics, has become a serious weed in the humid tropics and subtropics of Southeast Asia, Africa and Pacific Islands. In its introduced distributions, C. odorata has been recognised as two biotypes, the Asian/West African (AWA) biotype and South African (SA) biotype, with independent distribution, morphology and ecological characters. To characterise the genetic variability and identify the likely source regions in the native distributions of the two biotypes, we carried out an extensive phylogeographic study using chloroplast and nuclear DNA sequences and microsatellite DNA markers. The analysis of both DNA sequences and nuclear markers showed that native populations possessed high genetic diversity, while both the AWA and SA biotypes in invaded regions appeared to have low genetic diversity. The AWA and SA biotypes were genetically distinct. Strong competitive ability and environmental adaptability may have facilitated the invasion AWA and SA biotypes in its respective invasive regions. We conclude that the source of AWA biotype may be Trinidad and Tobago, while the SA biotype was from Cuba and Jamaica. For a better outcome of biocontrol, the potential biological control agents for the two biotypes should be collected from these native regions, respectively.  相似文献   

2.
李委涛  郑玉龙  冯玉龙 《生态学报》2014,34(23):6890-6897
飞机草(Chromolaena odorata)是我国热带地区危害严重的外来入侵植物,为揭示适应进化对其成功入侵的贡献,在同质种植园中,比较研究了飞机草10个入侵地种群与12个原产地种群生长性状的差异,为排除奠基者效应的可能影响,进一步比较了飞机草10个入侵地种群与其原产地可能的祖先种群间的差异。结果表明,飞机草10个入侵地种群的基茎、株高、分枝数、生物量和比叶面积均显著高于12个原产地种群;与可能的祖先种群相比,飞机草10个入侵种群的生物量、分枝数和比叶面积仍更高。这些结果表明,在长期的入侵过程中飞机草通过进化提高了资源向生长的分配,支持增强竞争能力的进化假说。  相似文献   

3.
The shrub Rosa rugosa (Japanese Rose), native to East Asia, is considered one of the most troublesome invasive plant species in natural or semi-natural habitats of northern Europe and has proven very difficult to control. We aimed at disentangling the species’ invasion history in Europe, including determining the number of introductions and their geographic origin, and at investigating whether populations in the introduced and native ranges differ in genetic diversity, structure and degree of differentiation. We found that introduced (n = 16) and native (n = 16) populations had similar levels of genetic diversity at seven nuclear SSR (microsatellite) loci. European populations lack isolation by distance and are less genetically differentiated than are populations in East Asia. Multiple and at least three independent colonization events, one of which was particularly successful, gave rise to current R. rugosa populations in Europe. The geographic distribution patterns of these three genetic clusters could not be explained by natural dispersal alone, indicating that human mediated secondary dispersal is driving the expansion in Europe. One cluster representing three of the European populations was most likely derived from NW Japan, whereas the origin of the remaining thirteen populations could not clearly be resolved. The introduction and expansion in Europe occurred with no significant loss of genetic diversity. We conclude that high propagule pressure at the primary establishment phase is the most parsimonious explanation for this pattern. A potential for long distance seed dispersal, coastal habitat connectivity and an outcrossing breeding system are factors likely to have enabled populations of R. rugosa to avoid detrimental effects of genetic bottlenecks and will further increase the species’ range size and abundance in Europe. We recommend that human-mediated dispersal should be prevented in order to halt the continued expansion.  相似文献   

4.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

5.
Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.  相似文献   

6.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

7.
The muskrat, Ondatra zibethicus, is a semiaquatic rodent native to North America that has become a highly successful invader across Europe, Asia, and South America. It can inflict ecological and economic damage on wetland systems outside of its native range. Anecdotal evidence suggests that, in the early 1900s, a population of muskrats was introduced to the Isles of Shoals archipelago, located within the Gulf of Maine, for the purposes of fur harvest. However, because muskrats are native to the northeastern coast of North America, their presence on the Isles of Shoals could be interpreted as part of the native range of the species, potentially obscuring management planning and biogeographic inferences. To investigate their introduced status and identify a historic source population, muskrats from Appledore Island of the Isles of Shoals, and from the adjacent mainland of Maine and New Hampshire, were compared for mitochondrial cytochrome b sequences and allele frequencies at eight microsatellite loci. Appledore Island muskrats consistently exhibited reduced genetic diversity compared with mainland populations, and displayed signatures of a historic bottleneck. The distribution of mitochondrial haplotypes is suggestive of a New Hampshire source population. The data presented here are consistent with a human-mediated introduction that took place in the early 1900s. This scenario is further supported by the zooarchaeological record and island biogeographic patterns. This is the first genetic study of an introduced muskrat population within US borders and of any island muskrat population, and provides an important contrast with other studies of introduced muskrat populations worldwide.  相似文献   

8.

Background

Aedes albopictus (Skuse, 1884) (Diptera: Culicidae), a mosquito native to Asia, has recently invaded all five continents. In Central Africa it was first reported in the early 2000s, and has since been implicated in the emergence of arboviruses such as dengue and chikungunya in this region. Recent genetic studies of invasive species have shown that multiple introductions are a key factor for successful expansion in new areas. As a result, phenotypic characters such as vector competence and insecticide susceptibility may vary within invasive pest species, potentially affecting vector efficiency and pest management. Here we assessed the genetic variability and population genetics of Ae. albopictus isolates in Cameroon (Central Africa), thereby deducing their likely geographic origin.

Methods and Results

Mosquitoes were sampled in 2007 in 12 localities in southern Cameroon and analyzed for polymorphism at six microsatellite loci and in two mitochondrial DNA regions (ND5 and COI). All the microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structureamong geographic populations (FST = 0.068, P<0.0001). Analysis of mtDNA sequences revealed four haplotypes each for the COI and ND5 genes, with a dominant haplotype shared by all Cameroonian samples. The weak genetic variation estimated from the mtDNA genes is consistent with the recent arrival of Ae. albopictus in Cameroon. Phylogeographic analysis based on COI polymorphism indicated that Ae. albopictus populations from Cameroon are related to tropical rather than temperate or subtropical outgroups.

Conclusion

The moderate genetic diversity observed among Cameroonian Ae. albopictus isolates is in keeping with recent introduction and spread in this country. The genetic structure of natural populations points to multiple introductions from tropical regions.  相似文献   

9.
The red clover casebearer, Coleophora deauratella, is an invasive pest of red clover grown for seed in North America. In 2006, an outbreak in Alberta, Canada was discovered that resulted in significant seed losses, while further invasion threatens the world’s largest red clover forage seed production region in Oregon, USA. Prior to the recent outbreak, C. deauratella was thought to be restricted to eastern North America in its invasive range. We sequenced a 615-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene, and developed three microsatellite markers to assess the genetic diversity and population structure of C. deauratella in North America and its native range in Europe. We observed signatures of a founder effect in North American populations and a further loss of genetic diversity within Alberta populations. Most genetic differentiation was found between continents, with no evidence of isolation-by-distance within each continent. From the limited number of European populations sampled, a single introduction from Switzerland is the most probable source of North American populations based on similar mitochondrial diversity and lack of population differentiation. Within North America, based on increased genetic diversity compared to the rest of the continent, the first North American record from Ithaca, NY, and the first documented outbreak in southern Ontario in 1989, the initial C. deauratella invasion most likely occurred in southern Ontario, Canada or adjacent states in the USA, followed by transport throughout the continent. This study provides insight into the phylogeographic history of C. deauratella in North America and Europe and may help to identify a regional source of future classical biological control agents.  相似文献   

10.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

11.
Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive. To identify likely source populations in the USA and to compare the genetic diversity of both native and introduced populations, an extensive molecular genetic study was undertaken using the COII region of mtDNA and 15 microsatellite loci. Our results showed that native northern US populations appeared well differentiated from those of the southern part of the US range. Phylogenetic analysis of both mitochondrial and nuclear markers showed that French populations probably originated from southeastern US populations, and more specifically from Louisiana. All of the mtDNA haplotypes shared between the United States and France were found in Louisiana. Compared to native populations in Louisiana, French populations show lower genetic diversity at both mtDNA and microsatellite markers. These findings are discussed along with the invasion routes of R. flavipes as well as the possible mechanisms by which French populations have evolved after their introduction.  相似文献   

12.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

13.
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.  相似文献   

14.
  1. The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.
  2. In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.
  3. Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.
  4. When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.
  5. Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
  相似文献   

15.
Invasive species’ success may depend strongly on the genetic resources they maintain through the invasion process. We ask how many introductions have occurred in the North American weed Centaurea stoebe micranthos (Asteraceae), and explore whether genetic diversity and population structure have changed as a result of introduction. We surveyed individuals from 15 European native range sites and 11 North American introduced range sites at six polymorphic microsatellite loci. No significant difference existed in the total number of alleles or in the number of private alleles found in each range. Shannon–Weaver diversity of phenotype frequencies was also not significantly different between the ranges, while expected heterozygosity was significantly higher in the invasive range. Population structure was similar between the native range and the invasive range, and isolation by distance was not significant in either range. Traditional assignment methods did not allocate any North American individuals to the sampled European populations, while Bayesian assignment methods grouped individuals into nine genetic clusters, with three of them shared between North America and Europe. Invasive individuals tended to have genetically admixed profiles, while natives tended to assign more strongly to a single cluster. Many North American individuals share assignment with Romania and Bulgaria, suggesting two separate invasions that have undergone gene flow in North America. Samples from three other invasive range sites were genetically distinct, possibly representing three other unique introductions. Multiple introductions and the maintenance of high genetic diversity through the introduction process may be partially responsible for the invasive success of C. stoebe micranthos.  相似文献   

16.
We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species.  相似文献   

17.
Understanding the population genetic diversity and structure of recently introduced pest species is important for determining appropriate strategies for pest control. In recent years, the rate of introduction of new invasive insect pests between continents has continued to increase. About a decade ago, the soybean aphid, Aphis glycines Matsumura, was introduced from East Asia (EA) into North America (NA) and is now widely established in NA. To compare soybean aphid populations between the native and invasive regions, we examined 689 individuals obtained from 28 different collections in NA and EA. A total of 8 microsatellite loci were used for population genetics statistics. Genetic differentiations among NA populations were very low compared to those among EA populations. Gene diversity and mean number of alleles in NA populations averaged 0.40 and 2.70, respectively, whereas in EA they averaged 0.55 and 4.32, respectively. Structure analysis of all populations revealed two distinct structures in the invaded and in the native regions. NA populations were divided into two distinct structures consistent with their geographic distribution. Among EA populations, certain Korean populations were genetically closest to NA populations, especially those from Ohio and Delaware. An approximate Bayesian computation test also supports an introduction into NA from Korea. These suggest that Korea is most likely to be the origin of soybean aphids in North America, rather than China or Japan.  相似文献   

18.
Highly polymorphic microsatellite markers can supply demographic information on founder events and range expansion following initial introduction of invasive insect species. Six microsatellite loci were isolated from a partial DNA library in order to study the invasion patterns of a seed chalcid, Megastigmus spermotrophus, introduced to Europe and New Zealand. Allelic diversity at all described loci was high, ranging from 17 to 30 alleles per locus. All six loci were successfully amplified in 15 congeneric species.  相似文献   

19.
The introduction and spread of non-indigenous species (NIS) in marine ecosystems accelerated during the twentieth century owing to human activities, notably international shipping. Genetic analysis has proven useful in understanding the invasion history and dynamics of colonizing NIS and identifying their source population(s). Here we investigated sequence variation in the nuclear ribosomal Internal Transcribed Spacer region of the ctenophore Mnemiopsis leidyi, a species considered one of the most invasive globally. We surveyed four populations from the native distribution range along the Atlantic coasts of the United States and South America, as well as six populations in the introduced range from the Black, Azov, Caspian and Baltic seas. Allelic and nucleotide diversity of introduced populations were comparable to those of native populations from which they were likely drawn. Introduced populations typically exhibited lower genetic differentiation (F ST = ?0.014?C0.421) than native populations (F ST = 0.324?C0.688). Population genetic analyses supported the invasion of Eurasia from at least two different pathways, the first from the Gulf of Mexico (e.g., Tampa Bay) to the Black Sea and thence to the Caspian Sea, the second from the northern part of the native distribution range (e.g., Narragansett Bay) to the Baltic Sea. The relatively high genetic diversity observed in introduced populations is consistent with large inocula and/or multiple invasions, both of which are possible given ballast water transport and the extensive native distribution of the ctenophore in the Atlantic Ocean.  相似文献   

20.
外来入侵植物飞机草的研究进展与展望   总被引:5,自引:0,他引:5       下载免费PDF全文
飞机草(Chromolaena odorata)是世界公认的多年生入侵性杂草, 原产于中、南美洲, 现已扩散至非洲、亚洲、大洋洲和西太平洋群岛的大部分热带及亚热带地区, 严重威胁着入侵地本地植物的生长、生物多样性和生态安全。由于其蔓延速度快, 及其对农、林、牧业等的巨大危害, 引起了社会各界的广泛关注。揭示飞机草的入侵机制, 对于遏制其扩散速度, 最终消除或降低其危害, 恢复生态系统平衡, 具有十分重要的现实意义和科学价值。该文介绍了飞机草的生物学特性、地理分布、入侵后果及防治措施等。鉴于目前对飞机草的入侵路线和入侵机制还没有全面系统的认识, 该文重点介绍了其在世界范围内的传播路线及其成功入侵机制, 旨在为飞机草的防治工作提供科学依据。最后提出有关飞机草生理生态学和分子生物学方面的一些展望, 并强调对其适应性进化遗传基础的研究可能为探讨其成功的入侵机制带来新突破。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号