首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

2.
Chitinase is one of the important mycolytic enzymes with industrial significance, and is produced by a number of organisms, including bacteria. In this study, we describe isolation, characterization and media optimization for chitinase production from a newly isolated thermotolerant bacterial strain, BISR-047, isolated from desert soil and later identified as Paenibacillus sp. The production of extracellularly secreted chitinase by this strain was optimized by varying pH, temperature, incubation period, substrate concentrations, carbon and nitrogen source,etc. The maximum chitinase production was achieved at 45 °C with media containing (in g/l) chitin 2.0, yeast extract 1.5, glycerol 1.0, and ammonium sulphate 0.2 % (media pH 7.0). A three-fold increase in the chitinase production (712 IU/ml) was found at the optimized media conditions at 6 days of incubation. The enzyme showed activity at broad pH (3–10) and temperature (35–100 °C) ranges, with optimal activity displayed at pH 5.0 and 55 °C, respectively. The produced enzyme was found to be highly thermostable at higher temperatures, with a half-life of 4 h at 100 °C.  相似文献   

3.
An alkalopsychrotrophic strain, Micrococcus sp. 207, inducibly and extracellularly produced amylase and pullulanase. The main hydrolysis product from amylose, with a crude enzyme preparation, was maltotetraose. The optimum temperature for activity of the amylase was 60°C and that for pullulanase 55°C. The activities at 0 to 30°C exhibited similar activation energy values. In an optimized production medium at pH 9.7, the highest yields of these enzymes were obtained after cell growth at 18°C for 4 days. At pH 8.5, the yields of amylase and pullulanase became maximum after 3 days cultivation. With more prolonged cultivation, the yield of amylase but not that of pullulanase activity decreased. These enzymes were not produced at temperatures above 30°C. Sucrose was not effective as an inducer, but it stimulated cell growth and enhanced the enzyme productivities with soluble starch.  相似文献   

4.
A chitinase gene from Serratia proteamaculans 18A1 was cloned, sequenced, and expressed in Escherichia coli M15. Recombinant enzyme (ChiA) was purified by Ni-NTA affinity column chromatography. The ChiA gene contains an open reading frame (ORF), encoding an endochitinase with a deduced molecular weight 60 kDa and predicted isoelectric point of 6.35. Comparison of ChiA with other chitinases revealed a modular structure containing an N-terminal PKD-domain, a family 18 catalytic domain and a C-terminal putative chitin-binding domain. Turn over rate (K cat) of the enzyme was determined using colloidal chitin (49.71 ± 1.15 S?1) and crystalline β-chitin (17.20 ± 0.83 S?1) as substrates. The purified enzyme was active over a broad range of pH (pH 4.5–9.0) and temperature (4–70°C) with a peak activity at pH 5.5 and 55°C. However, enzyme activity was found to be stable up to 45°C for longer incubation periods. Purified enzyme was shown to inhibit fungal spore germination and hyphal growth of pathogenic fungi Fusarium oxysporum and Aspergillus niger.  相似文献   

5.
One clone (ACPGA001) exhibiting penicillin G acylase (PGA) activity was screened from a metagenomic library by using a medium containing penicillin G. A novel PGA gene from the inserted fragment of ACPGA001 was obtained by sequencing. The amino acid sequence of ACPGA001 PGA exhibited <33 % similarity to PGAs retrieved from GenBank. This gene was expressed in Escherichia coli M15 and the recombinant protein was purified and characterized. The ACPGA001 PGA exhibited a maximum activity at 60 °C and showed high activity at pH 4–10 with an optimum pH of 8.0. This enzyme was stable at 40 °C for 70 min with a half-life of 60 min at 55 °C. These beneficial characteristics of ACPGA001 PGA provide some advantages for the potential application of ACPGA001 PGA in industry.  相似文献   

6.
A halophilic archaeon, Halorubrum sp. strain Ha25, produced extracellular halophilic organic solvent-tolerant amylopullulanase. The maximum enzyme production was at high salt concentration, 3–4 M NaCl. Optimum pH and temperature for enzyme production were 7.0 and 40 °C, respectively. Molecular mass of purified enzyme was estimated to be about 140 kDa by SDS–PAGE. This enzyme was active on pullulan and starch as substrates. The apparent K m for the enzyme activity on pullulan was 4 mg/ml and for soluble starch was 1.8 mg/ml. Optimum temperature for amylolytic and pullulytic activities was 50 °C. Optimum pH for amylolytic activity was 7 and for pullulytic activity was 7.5. This enzyme was active over a wide range of concentrations (0–4.5 M) of NaCl. The effect of organic solvents on the enzyme activities showed that this enzyme was more stable in the presence of non-polar organic solvents than polar solvents. This study is the first report on amylopullulanase production in halophilic bacteria and archaea.  相似文献   

7.
A novel endoglucanase gene, mgcel44, was isolated from a mangrove soil metagenomic library by functional-based screening. It encodes a 648-aa peptide with a catalytic domain of glycosyl hydrolase family 44. The deduced amino acid sequence of mgcel44 shares less than 50 % identity with endoglucanases in GenBank database. mgcel44 was cloned and overexpressed in Escherichia coli. The recombinant enzyme, MgCel44, has a molecular mass of 70.8 kDa as determined by SDS-PAGE. Its optimal pH and temperature for activity were 6 and 45 °C, respectively. It was highly active at 25–45 °C and pH 5–8. Its activity was enhanced in 0.5 M NaCl by >1.6-fold and stable up to 1.5 M NaCl. MgCel44 was resistant to several organic solvents and had high activity at 15 % (v/v) solvent after incubating for 24 h at 25 °C.  相似文献   

8.
A new source of lipase from Bacillus sp. ITP-001 was immobilized by physical adsorption on the polymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. The support and immobilized lipase were characterised, compared to the lyophilised lipase, with regard to the specific surface area, adsorption–desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption, differential scanning calorimetry, thermogravimetric analysis, chemical composition analysis, Fourier transform infrared spectroscopy and biochemical properties. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0, whereas the optimum pH for the free enzyme was at pH 7.0; the optimum temperature of activity was 80 and 37 °C for the free and immobilized enzyme, respectively. The inactivation rate constant for the immobilized enzyme at 37 °C was 0.0038 h?1 and the half-life was 182.41 h. The kinetic parameters obtained for the immobilized enzyme gave a Michaelis–Menten constant (K m) of 49.10 mM and a maximum reaction velocity (V max) of 205.03 U/g. Furthermore, the reuse of the lipase immobilized by adsorption allowed us to observe that it could be reused for 10 successive cycles, duration of each cycle (1 h), maintaining 33 % of the initial activity.  相似文献   

9.

Objectives

To identify novel pullulanases from microorganisms and to investigate their biochemical characterizations.

Results

A novel pullulanase gene (BmPul) from Bacillus megaterium WW1210 was cloned and heterologously expressed in Escherichia coli. The gene has an ORF of 2814 bp encoding 937 amino acids. The recombinant pullulanase (BmPul) was purified to homogeneity and biochemically characterized. BmPul has an MW of approx. 112 kDa as indicated by SDS-PAGE. Optimum conditions were at 55 °C and pH 6.5. The enzyme was stable below 40 °C and from pH 6.5?8.5. The Km values of BmPul towards pullulan and amylopectin were 3.3 and 3.6 mg/ml, respectively. BmPul hydrolyzed pullulan to yield mainly maltotriose, indicating that it should be a type I pullulanase.

Conclusions

A novel type I pullulanase from Bacillus megaterium was identified, heterologously expressed and biochemically characterized. Its properties makes this enzyme as a good candidate for the food industry.
  相似文献   

10.
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52 % amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55 % of the maximum activity when assayed at 40–75 °C, 23 % at 20 °C, 16 % at 85 °C, and even 8 % at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62 % xylanase activity and stability at the concentration of 3–30 % (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5–19.0, 15.3–19.0, 21.9–27.7, and 28.2–31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.  相似文献   

11.
A novel aldo–keto reductase gene, Tm1743, from Thermotoga maritima was overexpressed in Escherichia coli. The enzyme displayed the highest activity at 90 °C and at pH 9. It retained 63 % of its activity after 15 h at 85 °C. The enzyme also could tolerate (up to 10 % v/v) acetonitrile, ethanol and 2-propanol with slightly increased activities. Methanol, DMSO and acetone decreased activity slightly. Furthermore, Tm1743 exhibited broad substrate specificity towards various keto esters, ketones and aldehydes, with relative activities ranging from 2 to 460 % compared to the control. Its optimum substrate, 2,2,2-trifluoroacetophenone, was asymmetrically reduced in a coupled NADPH-regeneration system with an enantioselectivity of 99.8 % and a conversion of 98 %.  相似文献   

12.
An extracellular low temperature-active alkaline stable peptidase from Acinetobacter sp. MN 12 was purified to homogeneity with a purification fold of 9.8. The enzyme exhibited specific activity of 6,540 U/mg protein, with an apparent molecular weight of 35 kDa. The purified enzyme was active over broad range of temperature from 4 to 60 °C with optimum activity at 40 °C. The enzyme retained more than 75 % of activity over a broad range of pH (7.0–11.0) with optimum activity at pH 9.0. The purified peptidase was strongly inhibited by phenylmethylsulfonyl fluoride, giving an indication of serine type. The K m and V max for casein and gelatin were 0.3529, 2.03 mg/ml and 294.11, 384.61 μg/ml/min respectively. The peptidase was compatible with surfactants, oxidizing agents and commercial detergents, and effectively removed dried blood stains on cotton fabrics at low temperature ranging from 15 to 35 °C.  相似文献   

13.
A protease producing marine bacterium, Bacillus halodurans CAS6 isolated from marine sediments, was found to produce higher enzyme by utilizing shrimp shell powder. Optimum culture conditions for protease production were 50 °C, pH 9.0, 30 % NaCl and 1 % shrimp shell powder (SSP) and the protease purified with a specific activity of 509.84 U/mg. The enzyme retained 100 % of its original activity even at 70 °C, pH 10.0 and 30 % NaCl for 1 h. The purified protease exhibited higher stability when treated with ionic, non-ionic (72–94 %) and commercial detergents (76–88 %), and organic solvents (88–126 %). Significant blood stain removal activity was found with the enzyme in washing experiments. The culture supernatant supplemented with 1 % SSP showed 93.67 ± 2.52 % scavenging activity and FT-IR analysis of the reaction mixture confirmed the presence of antioxidants such as cyclohexane and cyclic depsipeptide with aliphatic amino groups. These remarkable qualities found with this enzyme produced by Bacillus halodurans CAS6 could make this as an ideal candidate to develop the industrial process for bioconversion of marine wastes and antioxidant synthesis.  相似文献   

14.
Cold-active lipase production by the psychrophilic strain Rhodococcus cercidiphylli BZ22 isolated from hydrocarbon-contaminated alpine soil was investigated. Depending on the medium composition, high cell densities were observed at a temperature range of 1–10 °C in Luria–Bertani (LB) broth or 1–30 °C in Reasoner’s 2A (R2A). Maximum enzyme production was achieved at a cultivation temperature of 1–10 °C in LB medium. About 70–80 % of the secreted enzyme was bound to the cell and was highly active as a cell-immobilized lipase which exhibited good reusability; more than 60 % of the initial lipase activity was retained after five-fold reuse. The properties of the lipase produced by the investigated strain were compared with those of a mesophilic porcine pancreatic lipase (PPL). The thermal stability of the cell-immobilized bacterial lipase was higher than that of the extracellular enzyme. Highest activity was detected at 30 °C for the cell-immobilized enzyme and for PPL, while the extracellular enzyme displayed highest activity at 10–20 °C. The bacterial lipase hydrolyzed p-nitrophenyl (p-NP) esters with different acyl chain lengths (C2–C18). The highest hydrolytic activity was obtained with p-NP-butyrate (C4) as substrate, while the highest substrate affinity was obtained with p-NP-dodecanoate (C12) as substrate, indicating a clear preference of the enzyme for medium acyl chain lengths.  相似文献   

15.
We have previously described two forms of an endo-β-1,4-xylanase (XynSW2A and XynSW2B) synthesized by thermotolerant Streptomyces sp. SWU10. Here, we describe another xylanolytic enzyme, designated XynSW1. The enzyme was purified to homogeneity from 2 L of culture filtrate. Its apparent molecular mass was 24 kDa. The optimal pH and temperature were pH 5.0 and 40 °C, respectively. The enzyme was stable in a wide pH ranges (pH 1–11), more than 80 % of initial activity remained at pH 2–11 after 16 h of incubation at 4 °C and stable up to 50 °C for 1 h. Xylobiose and xylotriose were the major xylooligosaccharides released from oat spelt xylan by the action of XynSW1, indicating of endo-type xylanase. The complete xynSW1 gene contains 1,011 bp in length and encode a polypeptide of 336 with 41 amino acids of signal peptide. The amino acid sequence analysis revealed that it belongs to glycoside hydrolase family 11 (GH11). The mature xynSW1 gene without signal peptide sequence was overexpressed in Pichia pastoris KM71H. The recombinant XynSW1 protein showed higher molecular mass due to the differences in glycosylation levels at the six N-glycosylation sites in the amino acid sequence and exhibited better physicochemical properties than those of the native enzyme including higher optimal temperature (60 °C), and specific activity, but lower optimal pH (4.0). Because of their stability in a wide pH ranges, both of native and recombinant enzymes of XynSW1, may have potential application in several industries including food, textile, biofuel, and also waste treatment.  相似文献   

16.
A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.  相似文献   

17.
In this study, we report the characterization of a protein from Aspergillus oryzae, exhibiting sequence identity with paraben esterase from the genus Aspergillus. The coding region of 1,586 bp, including a 77-bp intron, encoded a protein of 502 amino acids. The gene without the signal peptide of 19 amino acids was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0–8.0 and 30 °C, respectively, and was stable at the pH range of 7.0–10.0 and up to 40 °C. The optimal substrate for hydrolysis by the purified recombinant protein, among a panel of α-naphthyl esters (C2–C16), was α-naphthyl butyrate (C4), with activity of 0.16 units/mg protein. The considerable hydrolytic activity of the purified recombinant enzyme toward tributyrin was determined. However, no paraben esterase activity was detected toward the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid. In addition, no activity was detected toward the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids that would indicate feruloyl esterase activity.  相似文献   

18.
Glucose isomerase (GIase) catalyzes the isomerization of d-glucose to d-fructose. The GIase from Thermobifida fusca WSH03-11 was expressed in Escherichia coli BL21(DE3), and the purified enzyme took the form of a tetramer in solution and displayed a pI value of 5.05. The temperature optimum of GIase was 80 °C and its half life was about 2 h at 80 °C or 15 h at 70 °C. The pH optimum of GIase was 10 and the enzyme retained 95 % activity over the pH range of 5–10 after incubating at 4 °C for 24 h. Kinetic studies showed that the K m and K cat values of the enzyme are 197 mM and 1,688 min?1, respectively. The maximum conversion yield of glucose (45 %, w/v) to fructose of the enzyme was 53 % at pH 7.5 and 70 °C. The present study provides the basis for the industrial application of recombinant T. fusca GIase in the production of high fructose syrup.  相似文献   

19.
The phyL gene encoding phytase from the industrial strain Bacillus licheniformis ATCC 14580 (PhyL) was cloned, sequenced, and overexpressed in Escherichia coli. Biochemical characterization demonstrated that the recombinant enzyme has an apparent molecular weight of nearly 42 kDa. Interestingly, this enzyme was optimally active at 70–75 °C and pH 6.5–7.0. This enzyme is distinguishable by the fact that it preserved more than 40 % of its activity at wide range of temperatures from 4 to 85 °C. This new phytase displayed also a high specific activity of 316 U/mg. For its maximal activity and thermostability, this biocatalyst required only 0.6 mM of Ca2+ ion and exhibited high catalytic efficiency of 8.3 s?1 μM?1 towards phytic acid.  相似文献   

20.
A metagenomic library was generated using microbial DNA extracted from the rumen contents of a grass hay-fed dairy cow using a bacterial artificial chromosome-based vector system. Functional screening of the library identified a gene encoding a potent glycoside hydrolase, xyn10N18, localised within a xylanolytic gene cluster consisting of four open-reading frames (ORFs). The ORF, xyn10N18, encodes an endo-β-1,4-xylanase with a glycosyl hydrolase family 10 (GH10) catalytic domain, adopts a canonical α8/ß8-fold and possesses conserved catalytic glutamate residues typical of GH10 xylanases. Xyn10N18 exhibits optimal catalytic activity at 35 °C and pH 6.5 and was highly stable to pH changes retaining at least 85 % relative catalytic activity over a broad pH range (4.0–12.0). It retained 25 % of its relative activity at both low (4 °C) and high (55 °C) temperatures, however the stability of the enzyme rapidly decreased at temperatures of >40 °C. The specific activity of Xyn10N18 is enhanced by the divalent cations Mn2+ and Co2+ and is dramatically reduced by Hg2+ and Cu2+. Interestingly, EDTA had little effect on specific activity indicating that divalent cations do not function mechanistically. The enzyme was highly specific for xylan containing substrates and showed no catalytic activity against cellulose. Analysis of the hydrolysis products indicated that Xyn10N18 was an endoxylanase. Through a combination of structural modelling and in vitro enzyme characterisation this study provides an understanding of the mechanism and the substrate specificity of this enzyme serving as a starting point for directed evolution of Xyn10N18 and subsequent downstream use in industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号