首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removal of the pituitary 3 days before lentectomy retards Wolffian lens regeneration in the adult newt, Notophthalmus viridescens, by two stages over a 21-day period. Hypophysectomy 5 or 10 days after lentectomy does not alter the progress of regeneration during the subsequent 10-day period. Hypophysectomy 3 days before lentectomy also significantly decreases the incorporation of [3H]thymidine by iris epithelial nuclei 5 days after lentectomy but has no statistically significant effect on the incorporation 7 days after lentectomy.Pituitary tissue from newts or frogs enhances the regenerative activity of newt iris epithelial cells in vitro and in many cases promotes lens fiber formation. To a lesser extent, other tissues, such as nerve ganglion, also enhance the production of lens fiber cells from iris epithelium in vitro, whereas muscle tissue does not; and under certain conditions iris epithelial cells were found to depigment and redifferentiate into lens cells in the absence of other tissues in vitro.  相似文献   

2.
Lens regeneration from non-lens ocular tissues has been well documented in amphibians, from the dorsal iris in the newt and from the outer cornea in Xenopus. To understand the early molecular events which govern lens regeneration, we examined the expression of two early marker genes of normal lens development, Pax-6 and Prox 1. In both Cynops (newt) iris and Xenopus cornea, Pax-6 is expressed soon after lentectomy in a region broader than that giving rise to the regenerating lens, indicative of an important role for Pax-6 in determination of the regeneration potential. Then Prox 1 expression begins within the Pax-6-expressing tissue, and these Prox 1-expressing cells give rise to the regenerating lens. This sequence of events also takes place in the lens placode of the embryo, indicating that the presence of the same genetic program operates in both embryonic lens development and lens regeneration, at least partly. In the Cynops iris, Pax-6 expression occurs initially in the entire marginal region of the iris after lentectomy but then becomes restricted to the dorsal region. Further studies are expected to elucidate the mechanism of this long-standing problem of the dorsal-restriction of lens regeneration from the newt iris.  相似文献   

3.
The localization of a lens forming potency in the iris epithelium was studied by autoradiographic analysis of the distribution of 3H-thymidine labelled cells to be participated in lens regeneration in newts. DNA synthesis started from the dorsal portion of the iris epithelium around 4 days after lentectomy. 5 days after lentectomy, a large number of labelled cells were mostly found in the dorsal sector, showing strong contrast to the ventral and lateral sectors of iris, which contained a few labelled cells. The labelled index (the number of labelled cells/the number of cells in the definite pigmented area of the iris epithelium) of the dorsal sector attained the highest value, 29.7 ± 2.35, on day 7 after lentectomy, and dropped temporarily. This was followed by the second peak on day 12. The dorso-ventral ratio of the labelled index reached to the highest value, 6.87 ± 0.67, on day 5. This ratio decreased rapidly after the completion of a lens rudiment, and it became about 1. In “chase” experiments by diluting the radio-isotope with excess cold thymidine, it was obviously shown that most of the cells labelled with the radio-isotope and distributed in the dorsal marginal iris 5 days after lentectomy participated in the formation of a lens regenerate during the period of chasing. From these results, the following conclusion was drawn. The iris epithelium consists of at least 2 different cell populations; one is capable of transformation into lens cells and is distributed mostly in the dorsal portion of the iris epithelium, while the other has no potency for transformation and is able to grow to compensate a loss of the dorsal marginal cells which transformed into lens cells during the process of lens regeneration.  相似文献   

4.
To try to understand the mechanism of the dedifferentiation process which occurs during metaplastic transformation of iris epithelial cells into lens cells in newt lens regeneration, the activity of N -acetylglucosaminidase in iris and iris epithelium was studied as a function of time after lentectomy. The activity was found to increase during the dedifferentiation phase of the iris epithelium. The dorsal iris, where definite dedifferentiation occurs side by side with incomplete dedifferentiation, shows significantly greater enhancement of the activity than the ventral iris, where only incomplete dedifferentiation takes place. When the cells complete dedifferentiation and engage in redifferentiation into lens cells, the level of activity drops, approaching that of the normal lens. Evidence is also presented for release of the enzyme into the ocular fluid during dedifferentiation. The possibility that the enzyme is involved in surface alterations of iris epithelial ceils engaged in dedifferentiation is discussed.  相似文献   

5.
Since neural retina stimulates regeneration of a lens from the dorsal iris in newts, RNA and protein synthesis in the neural retina was investigated during this process. Incorporation of 3H-uridine and 3H-leucine using liquid scintillation counting was employed to compare RNA and protein synthesis in the neural retina from sham-operated control eyes with that in eyes during lens regeneration. An initial increase in 3H-uridine uptake was seen one to three days after lentectomy. This was followed by greater incorporation of 3H-leucine, indicating increased protein synthesis between 5 to 15 days after lens removal. A decrease in 3H-uridine uptake was also seen at 5 to 12 days after lentectomy. After 20 days both the RNA and protein synthesis returned to the normal level. Since the increase in protein synthesis is preceded by an increase in RNA synthesis, the two processes might be related. The results indicate significant changes in the synthesis of macromolecules by the neural retina following lentectomy. These may be indirectly related to the production of the neural retinal factor with stimulates lens differentiation.  相似文献   

6.
After lentectomy in newts, lens regeneration originates from the iris. The regenerant was externally observed with a stereomicroscope as a depigmented area (DA) of the iris, and the extent of DA up to 15 days after lentectomy was measured. The extent of DA was found to differ among individuals, whereas it was the same in both eyes of each animal. In a number of animals one eye was used for lentectomy. After measuring the DA, two groups of animals were selected; a "W-group" with an extremely wide DA that deviated from the standard value, and "N-group", with an extremely narrow DA. Six iris sectors obtained from the animals of the W-group or N-group were implanted into lentectomized eyes of other animals to investigate the difference in the distribution of lens potency in these two groups. Animals of the W-group possessed a wider distribution of lens potency than animals of the N-group. Pulse-labelling with 3H-thymidine on lentectomized eyes of both groups was done 0, 3, 5, 7 and 12 days after lentectomy. DNA-synthesis began earlier and continued longer in the dorsal part of the iris of the W-group than in that of the N-group. The distribution of lens potency in the iris is discussed on the basis of these findings.  相似文献   

7.
Larval Xenopus laevis at stage 56 (Nieuwkoop and Faber, '56) were subjected to various types of lentectomy: (1) simple lentectomy, from the pupillary space after incision of outer and inner cornea; (2) lentectomy from the dorsal region of the eye; (3) lentectomy from the dorsal region of the eye and simultaneous incision of the outer cornea; (4) lentectomy from the dorsal region of the eye and simultaneous incision of the outer and inner cornea. The results obtained show that the outer cornea underwent lens-forming transformations only when the inner cornea had been incised, thus permitting outer cornea (Experiments I-IV). No lens regeneration occurred when the inner cornea was left intact (Experiments II, III). It was concluded that the factor(s) allowing the lens-forming transformations of the outer cornea is not an aspecific nutritional factor(s) but a more specific factor(s) that cannot reach the outer cornea when the inner cornea is intact. Therefore, the absence of the lens and sufficient nutrient available to the outer cornea are not enough to allow lens regeneration from the outer cornea. When lens removal was carried out through the dorsal part of the eye (Experiments III-IV) the lens regenerated from the pericorneal epidermis of this region in a large number of cases.  相似文献   

8.
Cellular Studies of X-Ray Induced Inhibition of Lens Regeneration   总被引:1,自引:0,他引:1  
Whole-body X-irradiation of adult newts 0 to 3 days after lentectomy inhibits transformation of the dorsal iris epithelium into a lens in all cases. The first question raised was whether irradiation affects infiltration of the iris area by macrophages, and the phagocytic activities of these cell types in the iris epithelium (prominent phenomena in this system). The number of macrophages infiltrating into the iris epithelium, and their phagocytic activities (indicated by uptake of melanosomes) were not affected by irradiation under those conditions. The second group of experiments concerns the possible effects of irradiation on DNA replication of iris epithelial cells, which become transformed into lens cells in the non-irradiated system. Autoradiographic studies of iris epithelial cells in vivo revealed a significant suppressive effect of irradiation on the frequencies of cells incorporating 3H-thymidine 7 and 14 days after lentectomy. When autoradiography was applied to the primary pure culture of iris epithelial cells at different time intervals after the start of culture and irradiation in vitro , significant and persistent reduction of cell labelling due to irradiation, was demonstrated. Multiplication of spread cells in the iris epithelial culture was strongly and persistently inhibited throughout a period of 2 months. Inhibition of cell labelling and of cell multiplication was always accompanied by reduction in the extent of de-pigmentation of iris epithelial cells. De-pigmentation is one of the requirements for the cells become transformed into lens cells. The possible mechanism of radiation-induced inhibition of lens regeneration is discussed.  相似文献   

9.
Adult newts (Notophthalmus viridescens) were lentectomized and at intervals from 4 to 21 days after lentectomy iridocorneal complexes from these animals were examined by scanning electron microscopy to allow a full appreciation for the shape of the regenerating lens. Until around day 12 after lentectomy the posterior surface of the iris is covered by a dense mat of fibrous material which cannot be removed without damage to the iris and which obscures the events of cytoplasmic shedding. The regenerate becomes visible first around stage IV (day 12). A small but clear groove demarcates the regenerate from the rest of the iris. As regeneration progresses there is a marked reduction in debris on the iris surface and the regenerate appears as a U-shaped thickening occupying about one-third of the dorsal half of the iris. During later stages (VI–X) the regenerate protrudes into the pupil inferiorly and posteriorly towards the retina, but does not encroach laterally on the remaining pigmented iris tissue. Prior to secretion of the lens capsule the outline of individual cells is visible on the surface of the regenerate and some regenerates exhibit a prominent dimple on their posterior aspects. Following secretion of the capsule the surface of the regenerate becomes smooth. Quantitative studies show that volume and maximum section area of the regenerate are both more strongly correlated with developmental stage of regeneration than with time after lentectomy.  相似文献   

10.
After lentectomy of larval Xenopus laevis , the outer cornea undergoes tissue transformation resulting in formation of a new lens. This lens regeneration is triggered and sustained by neural retina. In the present study, lens-forming transformation of the outer cornea was completed in vitro when the outer cornea was cultured within the lentectomized eye-cup. Well-differentiated lens fiber cells, which showed positive immunofluorescence for total crystallins, were also formed when the outer cornea was cultivated with the retina. No lens tissue was formed when the cornea was cultured alone. Lens-forming transformation, originating from the cornea three and five days after lentectomy, completely regressed when the tissue was isolated in vitro . Fom the present and previous findings, we concluded that, the interaction of corneal cells with the retina plays a decisive role in lens regeneration in situ .  相似文献   

11.
The lens was removed from both eyes of adult newts (Notophthalmus viridescens), and the eyes were fixed in Karnovsky's fixative every 2 days 0-20 days after operation. Anterior half-eyes were prepared by standard procedures for scanning electron microscopy of the surface. Before fixation, the posterior iris surface was cleaned of adhering vitreous mechanically with forceps or by treatment with bovine testicular hyaluronidase or with hyaluronidase and collagenase. Some specimens were cryofractured in buffer or ethanol transverse to the mid-dorsal iris, and the fractured surface viewed with scanning electron microscopy (SEM). Cells with various combinations of ridges, blebs, filopodia, and lamellipodia were observed adhering to the posterior surface of the iris by 6 days after lentectomy. These cells, which exhibited the surface characteristics of macrophages, became more numerous in specimens fixed after longer intervals. Invasion of the iris epithelium was observed in a cryofractured specimen. After observations with SEM, selected specimens were embedded in plastic and sectioned for study with transmission electron microscopy (TEM). The cells on the iris surface had the cytological characteristics of macrophages, and other macrophages were located within the iris epithelium. In specimens fixed 16 or more days after lentectomy, a bulging lens vesicle was regenerating from the dorsal pupillary margin of the iris. Macrophages were absent or few on the surface of this developing lens but remained scattered over the adjoining iris. Roles that might be played by these macrophages during the transdifferentiation of iris epithelium into lens are discussed.  相似文献   

12.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

13.
Previously, the only anuran amphibians known to have the capacity to regenerate a lens after lentectomy were Xenopus laevis and Xenopus tropicalis. This regeneration process occurs during the larval life through transdifferentiation of the outer cornea promoted by inductive factors produced by the retina and accumulated inside the vitreous chamber. However, the capacity of X. tropicalis to regenerate a lens is much lower than that of X. laevis. This study demonstrates that Xenopus borealis, a species more closely related to X. laevis than to X. tropicalis, is not able to regenerate a lens after lentectomy. Nevertheless, some morphological modifications corresponding to the first stages of lens regeneration in X. laevis were observed in the outer cornea of X. borealis. This suggested that in X borealis the regeneration process was blocked at early stages. Results from histological analysis of X. borealis and X. laevis lentectomized eyes and from implantation of outer cornea fragments into the vitreous and anterior chambers demonstrated that: (i) in X. borealis eye, the lens-forming competence in the outer cornea and inductive factors in the vitreous chamber are both present, (ii) no inhibiting factors are present in the anterior chamber, the environment where lens regeneration begins, (iii) the inability of X. borealis to regenerate a lens after lentectomy is due to an inhibiting action exerted by the inner cornea on the spreading of the retinal factor from the vitreous chamber towards the outer cornea. This mechanical inhibition is assured by two distinctive features of X. borealis eye in comparison with X. laevis eye: (i) a weaker and slower response to the retinal inducer by the outer cornea; (ii) a stronger and faster healing of the inner cornea. Unlike X. tropicalis and similar to X. laevis, in X. borealis the competence to respond to the retinal factor is not restricted to the corneal epithelium but also extends to the pericorneal epidermis.  相似文献   

14.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

15.
Macrophage activity in Wolffian lens regeneration   总被引:3,自引:0,他引:3  
The cell type mainly involved in the phagocytic uptake of melanosomes from iris epithelial cells during Wolffian lens regeneration in the adult newt is identified on the basis of electron and light microscopic evidence as a macrophage of monocytic origin. Appearance of macrophages in iris and ciliary epithelia following lentectomy is a part of leucocytic infiltration of the area, in which granulocytes, mast cells, and other cell types also participate. The general pattern of leucocytic infiltration was studied as a function of time after lentectomy. Infiltration of the iris epithelium by macrophages is reduced when most of the melanosomes have been removed from the cytoplasm of the epithelial cells and finally ceases when depigmentation has been completed. The possibility that an immune mechanism mediated by macrophages is involved in dedifferentiation of iris epithelial cells is discussed.  相似文献   

16.
Lens regeneration in adult salamanders occurs at the pupillary margin of the mid-dorsal iris where pigmented epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. It is not understood how the injury caused by removal of the lens (lentectomy) in one location is linked to initiating the response in a different spatial location (dorsal iris) and to this particular sector. We propose that the blood provides a link between the localised coagulation and signal transduction pathways that lead to regeneration. A transmembrane protein (tissue factor) is expressed in a striking patch-like domain in the dorsal iris of the newt that localises coagulation specifically to this location, but is not expressed in the axolotl, a related species that does not show thrombin activation after lentectomy and cannot regenerate its lens. Our hypothesis is that tissue factor expression localises the initiation of regeneration through the activation of thrombin and the recruitment of blood cells, leading to local growth factor release. This is the first example of gene expression in a patch of cells that prefigures the location of a regenerative response, and links the immune system with the initiation of a regenerative program.  相似文献   

17.
Although it is generally assumed that the lens regenerated in the newt eye after complete lentectomy is formed by cells derived from the dorsal iris epithelium, experimental evidence so far obtained for this transformation does not rule out participation of cells from the dorsal iris stroma. When the normal dorsal iris epithelium of adult Notophthalmus (Triturus) viridescens was isolated and cultured in the presence of frog retinal complex, newt lens tissue was produced in 88% of cultures. These lens tissues were positive for immunofluorescence for lens-fiber-specific gamma crystallins as well as for total lens protein. On the basis of a study of stromal cells contaminating the samples of dorsal iris epithelium and a test for the lens-forming capacity in vitro of the dorsal iris stroma in the presence of frog retinal complex, it is concluded that lens formation observed in the above experiment is not dependent on the contaminating stromal cells. This implies that, in Wolffian lens regeneration, fully differentiated adult cells completely withdrawn from the cell cycle are transformed into another cell type. An additional culture experiment demonstrated that lens-forming capacity is not restricted to the dorsal half of the iris epithelium, but extends into its ventral half.  相似文献   

18.
We examined whether lymphangiogenesis is essential for the process of lens destruction and subsequent remodeling in the newt eye. Lens regeneration was induced by pricking the lens once with a needle through the cornea. The results showed that the formation of the vacuoles which was mediated by lysosomes occurred in the original lens on 8 days after pricking, and histolysis of the lens was induced 24 h later. At that time, new lymphatic vessels appeared in the normally avascular cornea. Immunofluorescence studies revealed the expression of VEGF receptor not only on the cells in the central cornea but also on those in the dorsal iris. Moreover, dendritic cells (DCs) migrated from the peripheral to the central regions in the cornea to engulf the remains of the lens. Next, to determine the extent to which the DCs are important for lens regeneration, we transplanted the DCs that had engulfed the remains of the lens into the eyeball of the normal animals. Interestingly, lens regeneration began in the dorsal iris of eyeballs into which the DCs were transplanted and also in those in which no DCs were transplanted. However, surgical removal of the spleen of the recipient animals prior to transplantation resulted in both a failure of both the VEGFR expression in the dorsal iris and a failure of the novel regeneration.  相似文献   

19.
Changes at the cell periphery during the dedifferentiative phase of the metaplastic transformation of iris into lens have been studied in Notophthalmus viridescens and Taricha granulosa using cell electrophoresis. Cell surface charge density increases as early as 1–3 days after lens removal. Cells of regenerates at 10–15 days after lentectomy have significantly lower electrophoretic mobilities than those of the irises of nonlentectomized newts. Decrease in surface charge density is due, at least in part, to the loss of ribonuclease- and neuraminidase-sensitive groups from the cell periphery. Loss of negatively charged groups from the cell surface appears to occur as cells go through dedifferentiation. Loss of cell surface components also occurs in the cells of the ventral iris which also undergo dedifFerentiation but do not regenerate a lens.  相似文献   

20.
Corneal epithelium is known to have high levels of some metabolic enzymes such as aldehyde dehydrogenase in mammals, gelsolin in zebrafish, and alpha-enolase in several species. Analogous to lens crystallins, these enzymes and proteins are referred to as corneal crystallins, although their precise function is not established in any species. Although it is known that after lentectomy, the outer cornea undergoes transdifferentiation to regenerate a lens only in anuran amphibians, major proteins expressed in an anuran cornea have not been identified. This study therefore aimed to identify the major corneal proteins in the Indian toad (Bufo melanostictus) and the Indian frog (Rana tigrina). Soluble proteins of toad and frog corneas were resolved on two-dimensional gels and identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight and electrospray ionization quadrupole time-of-flight. We report that anuran cornea is made up of the full complement of ubiquitous lens alpha-, beta-, and gamma-crystallins, mainly localized in the corneal epithelium. In addition, some taxon-specific lens crystallins and novel proteins, such as alpha- or beta-enolase/tau-crystallin, were also identified. Our data present a unique case of the anuran cornea where the same crystallins are used in the lens and in the cornea, thus supporting the earlier idea that crystallins are essential for the visual functions of the cornea as they perform for the lens. High levels of lens alpha-, beta-, and gamma-crystallins have not been reported in the cornea of any species studied so far and may offer a possible explanation for their inability to regenerate a lens after lentectomy. Our data that anuran cornea has an abundant quantity of almost all the lens crystallins are consistent with its ability to form a lens, and this connection is worthy of further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号