首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis previously identified the residues responsible for the biological activity of the plant defense legume lectin, Griffonia simplicifolia lectin II (GSII) [Proc. Natl. Acad. Sci. USA 95, (1998) 15123-15128]. However, these results were inconclusive as to whether these residues function as direct defense determinants through carbohydrate binding, or whether substantial changes of the protein structure had occurred in mutated proteins, with this structural disruption actually causing the loss of biochemical and biological functions. Evidence shown here supports the former explanation: circular dichroism and fluorescence spectra showed that mutations at carbohydrate-binding residues of GSII do not render it dysfunctional because of substantial secondary or tertiary structure modifications; and trypsin treatment confirmed that rGSII structural integrity is retained in these mutants. Reduced biochemical stability was observed through papain digestion and urea denaturation in mutant versions that had lost carbohydrate-binding ability, and this was correlated with lower Ca(2+) content. Accordingly, the re-addition of Ca(2+) to demetalized proteins could recover resistance to papain in the carbohydrate-binding mutant, but not in the non-binding mutant. Thus, both carbohydrate binding (presumably to targets in the insect gut) and biochemical stability to proteolytic degradation in situ indeed contribute to anti-insect activity, and these activities are Ca(2+)-dependent.  相似文献   

2.
Plant lectins have insecticidal activity that is probably mediated through their ability to bind carbohydrates. To examine the influence of sugars on the insecticidal activity of a lectin from Talisia esculenta seeds (TEL), the lectin was mixed with mannose, glucose, or mannose plus glucose. Mannose abolished the insecticidal activity. Affinity chromatography showed that TEL bound to midgut proteins of the insect Callosobruchus maculatus. Immunoblotting showed that TEL recognized some proteins, probably glycoproteins, present in the midgut membrane of this insect. The principal proteases responsible for digestive proteolysis in fourth instar larvae of C. maculatus were purified by chromatography on activated thiol-Sepharose. These purified proteases were unable to digest TEL after a 15-h incubation. These results suggest that the insecticidal activity of TEL involves a specific carbohydrate-lectin interaction with glycoconjugates on the surface of digestive tract epithelial cells, as well as binding to assimilatory glycoproteins present in midgut extracts and resistance to enzymatic digestion by cysteine proteinases.  相似文献   

3.
Abstract 1 The soybean cysteine protease inhibitor soyacystatin N (scN) and Griffonia simplicifolia lectin II (rGSII) have defense functions against the coleopteran cowpea bruchid beetle Callosobruchus maculatus. However, the ability of the insect to activate scN‐insensitive digestive proteases and the relatively low potency of rGSII have hindered their practical application in plant protection. 2 Recent research suggests that defense proteins may achieve increased toxicity and durability when used in combination. Based on the structures of several natural toxin molecules, we hypothesized that covalently linked scN and rGSII could exhibit greater anti‐insect efficacy than the mixture containing individual proteins. 3 To test this hypothesis, a recombinant scN‐rGSII fusion protein that retained both protease inhibitor and lectin functions was constructed. 4 When fed to cowpea bruchid, this new protein showed a synergistic delay in insect development, whereas a mixture of the separate proteins only showed an additive effect. 5 Our results suggest that tethering digestive protease inhibitors to gut epithelium‐interacting lectins could give plant protection superior to strategies based on single genes or mixtures of single gene products.  相似文献   

4.
Genetic engineering may be used to introduce multiple insect resistance genes with different modes of action into crop plants. We explored the possible interactions of two differing gene products fed in the diet of cowpea weevil, Callosobruchus maculates (F.), a stored grain pest. The soybean cysteine protease inhibitor soyacystatin N (scN) and alpha-amylase inhibitor (alphaAI) from wheat have defensive function against this coleopteran. When artificial seeds containing both scN and alpha(AI) were infested with eggs of C. maculatus, the delays in larval development were longer than was predicted by summing the developmental delays seen when larvae were fed a diet containing the individual proteins, indicating that the effects of scN and alpha(AI) are synergistic. Alpha(AI) was readily hydrolyzed when incubated with insect gut extract. This proteolytic degradation was inhibited by scN, but not by Kunitz inhibitor (a serine protease inhibitor). Thus, degradation of alpha(AI) was due to proteolysis by insect digestive cysteine proteases. These data suggest that C. maculatus uses digestive enzymes not only to function in food protein digestion but also to defend the insects themselves by helping reduce the concentration of a toxic dietary protein.  相似文献   

5.
A lectin from the marine red alga Gracilaria ornata (Gracilariaceae, Rodophyta) was purified and characterized. The purification procedure consisted of extracting soluble proteins in 0.025 M Tris-HCl buffer, pH 7.5, followed by ammonium sulfate precipitation (70% saturation), ion exchange chromatography on DEAE-cellulose and affinity chromatography on mucin-Sepharose 4B. The purified G. ornata lectin (GOL) showed a single protein band with an apparent molecular mass of 17 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing conditions. The native molecular mass of GOL determined by gel filtration on a Sephadex G-100 column was 17.4 kDa and its carbohydrate content was estimated to be 2.9%. Therefore, GOL is a monomeric glycoprotein. The purified lectin agglutinated trypsin-treated erythrocytes from rabbit and chicken but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested but by the complex glycoproteins porcine stomach mucin, lactotransferrin, asialofetuin and bovine and porcine thyroglobulins. Isoelectric focusing showed that GOL is an acidic protein with a pI of 5.4 with analysis of its amino acid composition revealing high contents of Asx, Glx, Ser, Glu, Ala and Cys. When incorporated in artificial seeds, GOL significantly affected the development of Callosobruchus maculatus larvae, indicating the possibility of using this lectin in a biotechnological strategy for insect management of stored cowpea seeds.  相似文献   

6.
Many plant lectins have high anti‐insect potential. Although the effects of most lectins are only moderately influencing development or population growth of the insect, some lectins have strong insecticidal properties. In addition, some studies report a deterrent activity towards feeding and oviposition behavior. Transmission of plant lectins to the next trophic level has been investigated for several tritrophic interactions. Effects of lectins with different sugar specificities can vary substantially with the insect species under investigation and with the experimental setup. Lectin binding in the insect is an essential step in exerting a toxic effect. Attempts have been made to study the interactions of lectins in several insect tissues and to identify lectin‐binding receptors. Ingested lectins generally bind to parts of the insect gut. Furthermore, some lectins such as the Galanthus nivalus agglutinin (GNA) cross the gut epithelium into the hemolymph and other tissues. Recently, several candidate lectin‐binding receptors have been isolated from midgut extracts. To date little is known about the exact mechanism for insecticidal activity of plant lectins. However, insect glycobiology is an emerging research field and the recent technological advances in the analysis of lectin carbohydrate specificities and insect glycobiology will certainly lead to new insights in the interactions between plant lectins and insects, and to a better understanding of the molecular mechanisms involved. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
The alpha subunit (Mr approximately 260,000) of the rat skeletal muscle sodium channel is sensitive to cleavage by endogenous proteases during the isolation of muscle surface membrane. Antisera against synthetic oligopeptides were used to map the resultant fragments in order to identify protease-sensitive regions of the channel's structure in its native membrane environment. Antibodies to the amino terminus labeled major fragments of Mr approximately 130,000 and 90,000 and lesser amounts of other peptides as small as Mr approximately 12,000. Antisera to epitopes within the carboxyl-terminal half of the primary sequence recognized two fragments of Mr approximately 110,000 and 78,000. Individual antisera also selectively labeled smaller polypeptides in the most extensively cleaved preparations. The immunoreactivity patterns of monoclonal antibodies previously raised against the purified channel were then surveyed. The binding sites for one group of monoclonals, including several that recognize subtype-specific epitopes in the channel structure, were localized within a 12-kDa fragment near the amino terminus. The distribution of carbohydrate along the primary structure of the channel was also assessed by quantitating 125I-wheat germ agglutinin and 125I-concanavalin A binding to the proteolytic peptides. Most of the carbohydrate detected by these lectins was located between 22 and 90 kDa from the amino terminus of the protein. No lectin binding was detected to fragments arising from carboxyl-terminal half of the protein. These results were analyzed in terms of current models of sodium channel tertiary structure. In its normal membrane environment, the skeletal muscle sodium channel appears sensitive to cleavage by endogenous proteases in regions predicted to link the four repeat domains on the cytoplasmic side of the membrane while the repeat domains themselves are resistant to proteolysis.  相似文献   

8.
Interaction of the tobacco lectin with histone proteins   总被引:1,自引:0,他引:1  
The tobacco (Nicotiana tabacum) agglutinin or Nictaba is a member of a novel class of plant lectins residing in the nucleus and the cytoplasm of tobacco cells. Since tobacco lectin expression is only observed after the plant has been subjected to stress situations such as jasmonate treatment or insect attack, Nictaba is believed to act as a signaling protein involved in the stress physiology of the plant. In this paper, a nuclear proteomics approach was followed to identify the binding partners for Nictaba in the nucleus and the cytoplasm of tobacco cv Xanthi cells. Using lectin affinity chromatography and pull-down assays, it was shown that Nictaba interacts primarily with histone proteins. Binding of Nictaba with histone H2B was confirmed in vitro using affinity chromatography of purified calf thymus histone proteins on a Nictaba column. Elution of Nictaba-interacting histone proteins was achieved with 1 m N-acetylglucosamine (GlcNAc). Moreover, mass spectrometry analyses indicated that the Nictaba-interacting histone proteins are modified by O-GlcNAc. Since the lectin-histone interaction was shown to be carbohydrate dependent, it is proposed that Nictaba might fulfill a signaling role in response to stress by interacting with O-GlcNAcylated proteins in the plant cell nucleus.  相似文献   

9.
10.
The homopteran sucking insect, Lipaphis erysimi (mustard aphid) causes severe damage to various crops. This pest not only affects plants by sucking on the phloem, but it also transmits single-stranded RNA luteoviruses while feeding, which cause disease and damage in the crop. The mannose-binding Allium sativum (garlic) leaf lectin has been found to be a potent control agent of L. erysimi. The lectin receptor protein isolated from brush border membrane vesicle of insect gut was purified to determine the mechanism of lectin binding to the gut. Purified receptor was identified as an endosymbiotic chaperonin, symbionin, using liquid chromatography-tandem mass spectrometry. Symbionin from endosymbionts of other aphid species have been reported to play a significant role in virus transmission by binding to the read-through domain of the viral coat protein. To understand the molecular interactions of the said lectin and this unique symbionin molecule, the model structures of both molecules were generated using the Modeller program. The interaction was confirmed through docking of the two molecules forming a complex. A surface accessibility test of these molecules demonstrated a significant reduction in the accessibility of the complex molecule compared with that of the free symbionin molecule. This reduction in surface accessibility may have an effect on other molecular interactive processes, including "symbionin virion recognition", which is essential for such symbionin-mediated virus transmission. Thus, garlic leaf lectin provides an important component of a crop management program by controlling, on one hand, aphid attack and on the other hand, symbionin-mediated luteovirus transmission.  相似文献   

11.
The Euonymus lectin (EUL) domain was recognized as the structural motif for a novel class of putative carbohydrate binding proteins. Confocal microscopy demonstrated that the lectin from Euonymus europaeus (EEA) as well as the EUL protein from Arabidopsis thaliana (ArathEULS3) are located in the nucleocytoplasmic compartment of the plant cell. ArathEULS3 as well as its EUL domain were successfully expressed in Pichia pastoris and purified. The EUL domain from Arabidopsis interacts with glycan structures containing Lewis Y, Lewis X and lactosamine, indicating that it can be considered a true lectin domain. Despite the high sequence identity between the EUL domains in EEA and ArathEULS3, both domains recognize different carbohydrate structures.  相似文献   

12.
The seeds of jack fruit (Artocarpus integrifolia) contain two tetrameric lectins, jacalin and artocarpin. Jacalin was the first lectin found to exhibit the beta-prism I fold, which is characteristic of the Moraceae plant lectin family. Jacalin contains two polypeptide chains produced by a post-translational proteolysis which has been shown to be crucial for generating its specificity for galactose. Artocarpin is a single chain protein with considerable sequence similarity with jacalin. It, however, exhibits many properties different from those of jacalin. In particular, it is specific to mannose. The structures of two crystal forms, form I and form II, of the native lectin have been determined at 2.4 and 2.5 A resolution, respectively. The structure of the lectin complexed with methyl-alpha-mannose, has also been determined at 2.9 A resolution. The structure is similar to jacalin, although differences exist in details. The crystal structures and detailed modelling studies indicate that the following differences between the carbohydrate binding sites of artocarpin and jacalin are responsible for the difference in the specificities of the two lectins. Firstly, artocarpin does not contain, unlike jacalin, an N terminus generated by post-translational proteolysis. Secondly, there is no aromatic residue in the binding site of artocarpin whereas there are four in that of jacalin. A comparison with similar lectins of known structures or sequences, suggests that, in general, stacking interactions with aromatic residues are important for the binding of galactose while such interactions are usually absent in the carbohydrate binding sites of mannose-specific lectins with the beta-prism I fold.  相似文献   

13.
Surfactant protein D (SP-D) is a multimeric collagenous lectin that mediates the clearance of pathogens and modulates immune cell functions via its C-terminal carbohydrate recognition domain (CRD). We hypothesized that extracellular proteolysis of SP-D may result in a loss of its functional properties. Multimeric SP-D was partially digested by human leukocyte elastase (HLE) dose- and time-dependently. Physiologic concentrations of calcium slowed, but did not protect from degradation. In solution, both native and degraded SP-D had an apparent molecular weight of 650 to >1000 kDa. Under reducing conditions, the degraded SP-D monomers run at 10 kDa less than native SP-D. Amino acid sequencing located all major cleavage sites into the CRD. Functional studies showed that degraded SP-D had lost its calcium-dependent lectin properties, i.e. neither bound to mannose nor agglutinated bacteria. These studies demonstrate that elastase results in the limited proteolysis of SP-D with loss of its CRD-dependent activities and suggest that proteases at concentrations observed in various lung diseases may impair the antimicrobial and immunomodulatory roles of SP-D.  相似文献   

14.
The role of neuropeptides in caterpillar nutritional ecology   总被引:5,自引:0,他引:5  
Bede JC  McNeil JN  Tobe SS 《Peptides》2007,28(1):185-196
Plant diet strongly impacts the fitness of insect herbivores. Immediately, we think of plant defensive compounds that may act as feeding deterrents or toxins. We are, probably, less aware that plants also influence insect growth and fecundity through their nutritional quality. However, most herbivores respond to their environment and select the diet which optimizes their growth and development. This regulation of nutritional balance may occur on many levels: through selecting and ingesting appropriate plant tissue and nutrient digestion, absorption and utilization. Here, we review evidence of how nutritional requirements, particularly leaf protein to digestible carbohydrate ratios, affect caterpillar herbivores. We propose a model where midgut endocrine cells assess and integrate hemolymph nutritional status and gut content and release peptides which influence digestive processes. Understanding the effects of diet on the insect herbivore is essential for the rational design and implementation of sustainable pest management practices.  相似文献   

15.
Y Ozeki  T Matsui  M Suzuki  K Titani 《Biochemistry》1991,30(9):2391-2394
The complete amino acid sequence of a 11.5-kDa subunit of D-galactoside binding lectin purified from sea urchin (Anthocidaris crassispina) eggs is presented. The 105-residue sequence of the subunit was determined by analysis of the intact S-carbamoylmethylated protein and peptides generated by digestion with Achromobacter protease I or Staphylococcus aureus V8 protease. The lectin exists as a disulfide-linked homodimer of two subunits; the dimeric form is essential for hemagglutination activity. However, the monomeric form obtained by partial reduction retains the carbohydrate binding capacity. Neither Ca2+ nor SH reagent is essential for hemagglutination or carbohydrate binding. The sequence has no similarity to that of any known protein and apparently represents a new type of galactoside binding lectin.  相似文献   

16.
Abstract. Larvae of Helicoverpa armigera (Hübner), a polyphagous lepidopteran crop pest, adapt to the presence of protease inhibitors in their diet by differential regulation of multiple genes encoding digestive proteases. The time‐course of their response to dietary soybean Kunitz trypsin inhibitor (SKTI) involves several stages; an initial up‐regulation of all protease genes assayed (up to 12 h after exposure to inhibitor) is succeeded by a longer‐term down‐regulation of expression of specific genes that encode proteases most sensitive to the inhibitor, whereas genes encoding putative inhibitor‐insensitive proteases continue to be up‐regulated (after 24 h of exposure). Consequently, insect protease activity changes from being sensitive to the inhibitor, to being largely insensitive. The insect response is comparable in its timescale with that of the synthesis of protease inhibitors in the plant wounding response. SKTl causes similar effects on protease gene expression and gut protease activity when fed in diets containing casein or hydrolysed casein as sources of amino acid, suggesting that the insect response is not mediated through inhibition of digestive proteolysis. Soybean Bowman–Birk inhibitor, which has a broader range of inhibitory activity against gut proteases in H. armigera, but is a less effective inhibitor on an I50 basis, proves to be a more effective antimetabolite than SKTI, but does not induce inhibitor‐insensitive protease activity because it causes a general up‐regulation of protease‐encoding genes. A possible mechanism to account for these different responses is discussed.  相似文献   

17.
Lectins from plants present an insecticidal activity most probably through their carbohydrate binding properties; as a consequence, their toxicity should vary with the presence of a competitive sugar in the ingested food. In order to test this hypothesis, we performed competition experiments between insecticidal activity and carbohydrate binding. For this purpose, we used a lectin from Lathyrus ochrus and the specific carbohydrate for this protein, glucose. In toxicological tests with Drosophila melanogaster, we observed a decrease of lectin toxicity when glucose was added to the larva-rearing medium. This result suggests that the toxicity of the lectin is correlated to its ability to bind sugar in the insect digestive tract and stresses the importance of sugar composition of the nutriment used for toxicological testing of lectins or in genetically modified plants.  相似文献   

18.
Bacillus thuringiensis protein delta-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac delta-endotoxin towards Pieris brassicae (family: Pieridae) and Mamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of approximately 56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of approximately 58, approximately 40, and approximately 20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, but M. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects.  相似文献   

19.
Rice brown planthoppers (Nilaparvata lugens) were fed on artificial diet containing snowdrop lectin (Galanthus nivalis agglutinin; GNA), which has been shown to be toxic towards this insect pest. In addition to decreasing survival, the lectin affected development, reducing the growth rate of nymphs by approximately 50% when present at a concentration of 5.3&mgr;M. Immunolocalisation studies showed that lectin binding was concentrated on the luminal surface of the midgut epithelial cells within the planthopper, suggesting that GNA binds to cell surface carbohydrate moieties in the gut. Immunolabelling at a lower level was also observed in the fat bodies, the ovarioles, and throughout the haemolymph. These observations suggest that GNA is able to cross the midgut epithelial barrier, and pass into the insect's circulatory system, resulting in a systemic toxic effect. Electron microscope studies showed morphological changes in the midgut region of planthoppers fed on a toxic dose of GNA, with disruption of the microvilli brush border region. No significant proteolytic degradation of GNA was observed either in the gut or honeydew of planthoppers fed on lectin-containing diet. The presence of glycoproteins which bind GNA in the gut of the brown planthopper was confirmed using digoxigen-labeled lectins to probe blots of extracted gut polypeptides.  相似文献   

20.
Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号