首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among lectins in the skin mucus of fish, primary structures of four different types of lectin have been determined. Congerin from the conger eel Conger myriaster and AJL-1 from the Japanese eel Anguilla japonica were identified as galectin, characterized by its specific binding to β-galactoside. Eel has additionally a unique lectin, AJL-2, which has a highly conserved sequence of C-type lectins but displays Ca2+-independent activity. This is rational because the lectin exerts its function on the cutaneous surface, which is exposed to a Ca2+ scarce environment when the eel is in fresh water. The third type lectin is pufflectin, a mannose specific lectin in the skin mucus of pufferfish Takifugu rubripes. This lectin showed no sequence similarity with any known animal lectins but, surprisingly, shares sequence homology with mannose-binding lectins of monocotyledonous plants. The fourth lectin was found in the ponyfish Leiognathus nuchalis and exhibits homology with rhamnose-binding lectins known in eggs of some fish species. These lectins, except ponyfish lectin, showed agglutination of certain bacteria. In addition, pufflectin was found to bind to a parasitic trematode, Heterobothrium okamotoi. Taken together, these results demonstrate that skin mucus lectins in fish have wide molecular diversity.  相似文献   

2.
Abstract

Red spider mite (Oligonychus coffeae) is one of the major pests of tea and damages 5–15% of the total crop every year. Mannose binding 25kDa lectins (ASAI, Allium sativum bulb agglutinin I and ASAII, A. sativum bulb agglutinin II), purified from bulbs of A. sativum (Garlic), was analyzed through SDS-PAGE and studied for its agglutination property using rabbit erythrocytes. Cross reactivity of the purified lectin was verified through western blot using anti-ASA antibody. ASAI was found to be a dimer built up of two heteromeric subunits whereas the ASAII is a homodimer. The insecticidal activity of the mixture of ASA lectins was tested against red spider mite in an artificial diet. The LC50 values for red spider mite was determined to be 12.4±1.918µg/ml. This finding opens up a possibility of using the ASA genes against red spider mite through tea transgenic approach.  相似文献   

3.
Wild type Crithidia fasciculata and three drug-resistant mutant strains that have shown “flagellar adherence” were studied as to their ability to agglutinate with lectins specific for receptor molecules containing N-acetyl glucosamine, N-acetyl galactosamine, galactose, mannose-like residues, fucose, and sialic acid. Escherichia coli with mannose-sensitive fimbriae was also used as an agglutination probe. The presence of D-GalNAc, D-Gal, and mannose-like residues was detected in the wild strain. Generally, in the mutants, residues of these sugar units were present in greater concentrations when compared to the wild type strain. β-Galactosidase treatment showed that β-D-Galp units are exposed on the cell membrane. All types of cell agglutination including flagellum-flagellum (F-F), flagellum-soma (F-S), and soma-soma (S-S) were observed when lectins were used; however, with E. coli only the F-F type of cell agglutination was observed with the wild type strain and the TFRR1 mutant. All types of agglutination were observed with the other two mutants.  相似文献   

4.
四种蕈菌凝集素的筛选及活性检测   总被引:1,自引:0,他引:1  
以长刺猴、白平菇、毛尖蘑、滑菇四种蕈菌为材料,经硫酸铵沉淀、透析,得到蛋白质提取液,用不同类型的红细胞检测凝集活性(人的A型、B型、AB型、O型血,兔血、鸡血、蛤蟆血)。结果表明,长刺猴、白平菇、滑菇3种蕈菌的提取物中均含有凝集素,桦树蘑对兔红细胞凝集性最强。凝集活性可分别被一种或多种类型糖所抑制。同时它们均表现出较好的热稳定性及pH耐受性,金属离子对凝集素的影响也相当大。  相似文献   

5.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

6.
The interaction between bacteria and three L-rhamnose-binding lectins, named STL1, STL2, and STL3, from steelhead trout (Oncorhynchus mykiss) eggs was investigated. Although STLs bound to most Gram-negative and Gram-positive bacteria, they agglutinated only Escherichia coli K-12 and Bacillus subtilis among the bacteria tested. The binding was inhibited by L-rhamnose. STLs bound to distinct serotypes of lipopolysaccharides (LPSs), and showed much higher binding activities to smooth-type LPSs of Escherichia coli K-12 and Shigella flexneri 1A than to their corresponding rough-type LPSs. STLs also bound to lipoteichoic acid (LTA) of Bacillus subtilis. These results indicate that STLs bound to bacteria by recognizing LPSs or LTA on the cell surfaces.  相似文献   

7.
SYNOPSIS. Living, intact bloodstream trypomastigotes and culture procyclic forms of Trypanosoma congolense were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), wheat germ agglutinin (WGA), soybean agglutinin (SBA), and fucose binding protein (FBP). Similar experiments were conducted with living bloodstream and culture forms treated with trypsin or dextranase. Parasites were incubated for 30 min at 25 C in various concentrations of each lectin, then examined for agglutination by dark-field microscopy. Control preparations consisted of parasites incubated alone or with 0.5 M of the specific competing sugar, with or without the corresponding lectin. Electron-microscopic localization of lectin binding sites on the surface of intact and dextranase-treated bloodstream and intact culture forms was accomplished with Con A, reacted with horseradish peroxidase (HRP) and then diaminobenzidine (DAB). In addition, FBP and SBA were coupled to HRP, then utilized for the localization of binding saccharides on the surface of blood-stream forms by the DAB technic. Similar studies were conducted with culture procyclics incubated with WGA-, SBA, PP- or FBP-HRP conjugates and then reacted with DAB. Controls were utilized to confirm the sugar specificity of all positive reactions. Intact living bloodstream forms were agglutinated in a concentration-dependent manner with all the lectins tested. Agglutination levels were scored as Con A > FBP > WGA = PP = SBA. Sugars resembling α-D-mannose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, and α-L-fucose are evidently present on the surface of the parasites. No agglutination was noted in any control preparations. Identical lectin-induced agglutinations were obtained with trypsin- or dextranase-treated bloodstream forms. Trypsin disrupted but did not entirely remove the surface coat of bloodstream forms, while dextranase did not alter the ultrastructure of the parasites. Con A-, SBA- and FBP-binding saccharides were distributed uniformly on the surface coat of intact bloodstream forms; a similar distribution of Con A receptors was noted also on the surface of dextranase-treated cells. No lectin-binding saccharides were visualized by electron microscopy on any control preparations. Intact, trypsin- or dextranasetreated, procyclics were agglutinated in a concentration-dependent fashion by Con A and WGA, but not by the other lectins tested. Control preparations did not agglutinate and the enzymes did not affect the ultrastructure of the parasites. Con A- and WGA-specifically binding saccharides were uniformly distributed on intact procyclics and control preparations were lectin-negative. Thus, T. congolense procyclics retained surface saccharides resembling α-D-mannose and N-acetyl-D-glucosamine but lost sugars resembling N-acetyl-D-galactosamine (or D-galactose) and α-L-fucose. The failure of dextranase to remove the lectin-binding saccharides from the surface of bloodstream and procyclic forms suggests that α-1,6-glucan bonds do not link these carbohydrates. The results are contrasted with lectin research on other trypanosome species and discussed with relation to the biology of T. congolense.  相似文献   

8.
Acute toxicity of thirty lectins was tested against the pea aphidAcyrthosiphon pisum (Harris) (Homoptera, Aphididae: Macrosiphini). Activity was measured on artificial diets containing moderate concentrations of lectins (10–250 μg/ml) by scoring mortality and growth inhibition over the whole nymphal period (7 days at 20°C). Most of the proteins tested exhibited low toxicity, but some induced significant mortality; these included the lectins from jackbean (Concanavalin A), amaranth, lentil and snowdrop. There was no direct correlation between toxicity and sugar specificity of the lectin; however, many mannose-binding lectins were toxic towardsA. pisum. Concanavalin A was also tested on five other aphid species (Aphis gossypii, Aulacortum solani, Macrosiphum euphorbiae, Macrosiphum albifrons andMyzus persicae) at concentrations between 10–1500 μg/ml. Mortality was very variable from one species to another. Strong growth inhibition invariably occurred within this concentration range, although dose-response curves differed substantially between aphid species. The peptidase complement ofA. pisum’s digestive tract was also investigated, as well as the oral toxicity of some protease inhibitors (PIs) to this aphid. Most protein PIs were inactive, and no part of the digestive tract contained detectable amounts of endo-protease activity. This is in contrast to the strong amino-peptidase activity which was shown to occur predominantly in the midgut and crop portions of the digestive tract. The potential of lectins in transgenic crops to confer Host-Plant Resistance to aphids is discussed.  相似文献   

9.
Lectins have been used in glycoprotein purification, oligosaccharide analysis, and in cell‐selection processes. Here, we utilize lectins in a rational attempt to select a subpopulation of insect cells (Estigmene acrea, EAA) with more complete glycosylation capacity by selecting cells that display more complex‐type cell‐surface oligosaccharides than the general population of cells. A lectin (ECA) from Erythrina cristagalli, specific for galactose β(1‐4)N‐acetylglucosamine, was found to be useful in recognizing a small subpopulation of Sf‐21 and EAA cells. Cell selections were performed by lectin affinity chromatography and by selective agglutination. Analysis by lectin blots of cell lysates and a quantitative agglutination assay did not reveal significant differences in regard to the level of complex glycosylation between the negatively and positively selected subpopulations of EAA cells. Statistically significant differences in binding the fluorescently labeled lectin, ECA‐TRITC were observed even 30 passages post‐selection between EAA subpopulations that were negatively and positively selected by lectin affinity chromatography. There were no differences in the two subpopulations in the ECA quantitative agglutination assay. Thus, the hypothesis that a subpopulation differing in glycosylation capacity exists and that such a subpopulation can be identified by the character of cell‐surface oligosaccharides is plausible. However, these differences appear to be too small to be of practical use. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 616–619, 1999.  相似文献   

10.
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

11.
Cell-surface lectins were screened in seven strains of Azospirillum brasilense and A. lipoferum. The presence of lectins was determined by particle agglutination assays employing latex beads coated with neoglycoproteins and by Western blot with neoglycoproteins labeled with horseradish peroxidase as a probe. Seven strains were agglutinated with the assayed sugar residues. The highest agglutination was with fucose and glucose and to a lesser extent with mannose residues. Cell-wall proteins extracted from two Azospirillum spp. strains exhibit lectin-like activities. We believe that lectins are present in the cell-wall of Azospirillum spp. Received: 23 June 1997 / Accepted: 23 September 1997  相似文献   

12.
The mutant strain Azospirillum brasilenseSp7.2.3 with impaired lectin activity exhibited poorer cell aggregation than its parent strain A. brasilenseSp7(S) both in the exponential and stationary growth phases. The pretreatment of bacterial cells with the specific haptens (L-fucose and D-galactose) of a lectin located at the cell surface of the mutant strain was found to inhibit the aggregation of azospirilla. The specific binding of the A. brasilenseSp7(S) lectin to the extracellular polysaccharide-containing complexes of this strain was revealed by dot immunoblotting on nitrocellulose membrane filters. The interaction of the lectins of A. brasilense75, A. brasilenseSp7, and A. lipoferum59b with the polysaccharide-containing complexes that were isolated from these strains was not specific. No interstrain cross-interaction between the exopolysaccharides and lectins of azospirilla was found. A coflocculation of A. brasilenseSp7 cells with Bacillus polymyxa1460 cells was shown. The involvement of autogenous lectins in the aggregation of bacterial cells is discussed.  相似文献   

13.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

14.
The Orchidaceae speciesListera ovata andEpipactis helleborine contain two types of mannose-binding proteins. Using a combination of affinity chromatography on mannose-Sepharose-4B and ion exchange chromatography on a Mono-S column eight different mannose-binding proteins were isolated from the leaves ofListera ovata. Whereas seven of these mannose-binding proteins have agglutination activity and occur as dimers composed of lectin subunits of 11–13 kDa, the eighth mannose-binding protein is a monomer of 14 kDa devoid of agglutination activity. Moreover, the monomeric mannose-binding protein does not react with an antiserum raised against the dimeric lectin and, in contrast to the lectins, is completely inactive when tested for antiretroviral activity against human immunodeficiency virus type 1 and type 2. Mannose-binding proteins with similar properties were also found in the leaves ofEpipactis helleborine. However, in contrast toListera only one lectin was found inEpipactis. Despite the obvious differences in molecular structure and biological activities molecular cloning of different mannose-binding proteins fromListera andEpipactis has shown that these proteins are related and some parts of the sequences show a high degree of sequence homology indicating that they have been conserved through evolution.Abbreviations EHMBP Epipactis helleborine mannose-binding protein - LOMBP Listera ovata mannose-binding protein Note: The nucleotide sequences reported in this paper will appear in the Genbank/EMBL Data library with the accession numbers L18894, L18895 and U07787.  相似文献   

15.
Using a combination of cDNA cloning and protein purification it is demonstrated that bark of yellow wood (Cladrastis lutea) contains two mannose/glucose binding lectins and a lectin-related protein which is devoid of agglutination activity. One of the lectins (CLAI) is the most prominent bark protein. It is built up of four 32 kDa monomers which are post-translationally cleaved into a 15 kDa and a 17 kDa polypeptide. The second lectin (CLAII) is a minor protein, which strongly resembles CLAI except that its monomers are not cleaved into smaller polypeptides. Molecular cloning of the Cladrastis lectin family revealed also the occurrence of a lectin-related protein (CLLRP) which is the second most prominent bark protein. Although CLLRP shows sequence homology to the true lectins, it is devoid of carbohydrate binding activity. Molecular modelling of the three Cladrastis proteins has shown that their three-dimensional structure is strongly related to the three-dimensional models of other legume lectins and, in addition, revealed that the presumed carbohydrate binding site of CLLRP is disrupted by an insertion of three extra amino acids. Since it is demonstrated for the first time that a lectin and a noncarbohydrate binding lectin-related protein are the two most prominent proteins in the bark of a tree, the biological meaning of their simultaneous occurrence is discussed.  相似文献   

16.
Basidiomycete mushrooms are a rich source of unique substances, including lectins, that could potentially be useful in biotechnology or biomedical applications. Lectins are a group of carbohydrate-binding proteins with diverse biological activities and functions. Here, we demonstrate the presence of a number of lectins in the basidiomycete mushroom Clitocybe nebularis. Glucose-, galactose-, sucrose-, lactose-, and Sepharose-binding lectins were isolated from fruiting bodies using affinity chromatography on Sepharose-immobilized sugars or on Sepharose. The lectins were characterized biochemically and their binding specificities examined by agglutination and agglutination inhibition assays. In addition, insecticidal and anti-nutritional properties of the lectins were studied against a model organism, fruit fly (Drosophila melanogaster), and Colorado potato beetle (Leptinotarsa decemlineata). Of the several basidiomycete mushrooms screened, C. nebularis extract showed the most potent insecticidal activity. Sucrose-binding lectin showed the strongest activity against D. melanogaster, followed by lactose- and galactose-binding lectins. Feeding bioassays with Colorado potato beetle revealed that C. nebularis extract exhibited high anti-nutritional activity against the insect; and of those tested, only lactose-binding lectin, named CNL showed the effect. Mushroom C. nebularis is shown to be rich in a variety of lectins with versatile biological activities, including insecticidal and anti-nutritional effects. C. nebularis lectins could thus have potential for use as natural insecticides.  相似文献   

17.
When the coenocytic green alga Bryopsis plumosa (Huds.) Ag. was cut open and the cell contents were expelled, the cell organelles agglutinated rapidly in seawater to form protoplasts. Aggregation of cell organelles in seawater was mediated by a lectin–carbohydrate complementary system. Two sugars, N‐acetyl‐d ‐glucosamine and N‐acetyl‐d ‐galactosamine inhibited aggregation of cell organelles. The presence of these sugars on the surface of chloroplasts was verified with their complementary fluorescein isothiacyanate‐labeled lectins. An agglutination assay using human erythrocytes showed the presence of lectins specific for N‐acetyl‐d ‐galactosamine and N‐acetyl‐d ‐glucosamine in the crude extract. One‐step column purification using N‐acetyl‐d ‐glucosamine‐agarose affinity chromatography yielded a homogeneous protein. The protein agglutinated the cell organelles of B. plumosa, and its agglutinating activity was inhibited by the above sugars. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed that this protein might be composed of two identical subunits cross‐linked by two disulfide bridges. Enzyme and chemical deglycosylation experiments showed that this protein is deficient in glycosylation. The molecular weight was determined as 53.8 kDa by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The N‐terminal 15 amino acid sequence of the lectin was Ser–Asp–Leu–Pro–Thr–X–Asp–Phe–Phe–His–Ile–Pro–Glu–Arg–Tyr, and showed no sequence homology to those of other reported proteins. These results suggest that this lectin belongs to a new class of lectins. We named this novel lectin from B. plumosa“bryohealin.”  相似文献   

18.
Agglutinins from marine macroalgae of the southeastern United States   总被引:4,自引:0,他引:4  
Protein extracts from 22 species of marine macroalgae from Florida and North Carolina were compared for their abilities to agglutinate sheep and rabbit erythrocytes. Protein extracts from 21 algal species agglutinated rabbit erythrocytes compared to 19 for sheep erythrocytes. However, agglutination by brown algal extracts was variable. The agglutination produced by protein extracts from Dictyota dichotoma could be blocked by addition of polyvinylpyrrolidone. Protein extracts from North Carolina macroalgae were also tested against five bacterial species. Three of these agglutinated bacterial cells. Ulva curvata and Bryopsis plumosa agglutinated all five species. Protein extracts from five species of Florida algae were tested for their effects on mitogenesis in mouse splenocytes and human lymphocytes. Gracilaria tikvahiae HBOI Strain G-5, Ulva rigida and Gracilaria verrucosa HBOI Strain G-16S stimulated mitogenesis in mouse splenocytes, while Gracilaria tikvahiae HBOI Strain G-16stimulated mitogenesis in human lymphocytes.  相似文献   

19.
Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells.cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level.Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5–13 kDa) after post-translational modifications.Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.  相似文献   

20.
To develop a convenient method to isolate lectins, we prepared an affinity gel by coupling plasma proteins with agarose beads under conditions where the pH did not exceed 7.5. The validity of the use of this affinity gel in combination with elution using a hapten saccharide was confirmed by isolation of concanavalin A from Jack bean meal. Successful application of the method was demonstrated by isolation of two novel vegetable lectins from udo (Aralia cordate) and wasabi (Wasabia japonica). The method would be useful to isolate new lectins from various sources including plant and animal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号