首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevalence and nature of Shiga toxin (Stx)-producing Escherichia coli (STEC) and Stx phage were investigated in 720 swine fecal samples randomly collected from a commercial breeding pig farm in China over a 1-year surveillance period. Eight STEC O157 (1.1%), 33 STEC non-O157 (4.6%), and two stx-negative O157 (0.3%) isolates were identified. Fecal filtrates were screened directly for Stx phages using E. coli K-12 derivative strains MC1061 as indicator, yielding 15 Stx1 and 57 Stx2 phages. One Stx1 and eight Stx2 phages were obtained following norfloxacin induction of the eight field STEC O157 isolates. All Stx1 phages had hexagonal heads with long tails, while Stx2 phages had three different morphologies. Notably, most of field STEC O157 isolates released more free phages and Stx toxin after induction with ciprofloxacin. Furthermore, upon infection with the recombinant phage ΦMin27(Δstx::cat), E. coli laboratory strains produced both lysogenic and lytic phage, whereas two of the eight O157 STEC isolates produced only lysogens. The lysogens from laboratory strains produced infectious particles similar to ΦMin27. Similarly, the lysogens from the STEC O157 isolates released Stx phage too, although free ΦMin27(Δstx::cat) particles were not detected. Collectively, our results reveal that breeding pig farms could be important reservoirs for Stx phages and that residual antibacterial agents may enhance the release of Stx phages and the expression of Stx.  相似文献   

2.
The isolation and characterization of Shiga-like toxin (Stx)-producing Escherichia coli (STEC) from sheep are described. The distribution of stx genes in E. coli isolates was detected by PCR. When brain heart infusion (BHI) broth and novobiocin supplemented m-EC broth (N-mEC) were used as enrichment culture for the isolation of STEC, N-mEC, compared to BHI, showed clearly lower efficiency. Finally, 5 STEC isolates from 4 sheep were isolated and characterized by biochemical and genetical analysis. All of them were confirmed by ELISA and Vero cell cytotoxicity assay for the production of Stx. Moreover, some strains carried hemolysin and eaeA genes and harbored large plasmids. Based on their plasmid profiles, antibiotic patterns and PCR-based DNA fingerprinting analysis using random amplified polymorphic DNA (RAPD), all isolates were different from each other. Three of the isolates were identified to belong to serogroups O2, O153 and O165, respectively, and the STEC strains belonging to these serogroups had been isolated from STEC outbreaks in humans. Four months after the first isolation in July 1997, STEC from sheep #1 was isolated again. A new isolate, HI-11, was identified as STEC O2: Hnt. Simultaneously, 2 STEC, which were genetically and phenotypically different from each other, were isolated from the same sheep at intervals of 4 months. These results demonstrate that sheep may be an important animal for studying human STEC infections, and that further epidemiological surveys on STEC are necessary.  相似文献   

3.
A bacteriological investigation of Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 was performed on 298 carcasses of cattle at slaughter houses between July 1996 and January 1997 in Gifu Prefecture, Japan. As a result, four Stx-non-producing Escherichia coli O157:H7 strains were isolated from two slaughtered carcasses of cattle. The purpose of this study was to examine the characterization of isolates. Isolates possessed the E. coli attaching and effacing gene (eaeA), and hemolysin gene (hlyA), and harbored 3.0-MDa and 60-MDa plasmids. The Xba I pulsed-field gel electrophoresis (PFGE) pattern showed three similar patterns. Consequently, a closely related genotype of Stx-non-producing E. coli O157:H7 may widely exist in cattle.  相似文献   

4.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.  相似文献   

5.

Background

Shiga toxin-producing Escherichia coli (STEC) are frequent causes of severe human diseases ranging from diarrhea to hemolytic uremic syndrome. The existing strategy for detection of STEC relies on the unique sorbitol-negative fermentation property of the O157 strains, the most commonly identified serotype has been E. coli O157. It is becoming increasingly evident, however, that numerous non-O157 STEC serotypes also cause outbreaks and severe illnesses. It is necessary to have new methods that are capable of detecting all STEC strains.

Methods and Findings

Here we describe the development of a sandwich ELISA assay for detecting both O157 and non-O157 STECs by incorporating a novel polyclonal antibody (pAb) against Stx2. The newly established immunoassay was capable of detecting Stx2a spiked in environmental samples with a limit of detection between 10 and 100 pg/mL in soil and between 100 and 500 pg/mL in feces. When applied to 36 bacterial strains isolated from human and environmental samples, this assay detected Stx2 in all strains that were confirmed to be stx2-positive by real-time PCR, demonstrating a 100% sensitivity and specificity.

Conclusions

The sandwich ELISA developed in this study will enable any competent laboratory to identify and characterize Stx2-producing O157 and non-O157 strains in human and environmental samples, resulting in rapid diagnosis and patient care. The results of epitope mapping from this study will be useful for further development of a peptide-based antibody and vaccine.  相似文献   

6.
In Mellassine (a major city in the state of Tunis) and Ben Arous state (south east of Tunis), a total of 212 stool samples were collected from children and adults (symptomatic and asymptomatic groups) between November 2001 and November 2004. Three hundred and twenty-seven E. coli strains were isolated and studied, to look for shiga toxin-producing Escherichia coli (STEC) strains, which were further analysed to investigate and determine clonal relationship among Tunisian STEC strains isolated from different sources (diarrheal cases and food products). They were analysed to characterize their serotypes, virulence genes by PCR, cytotoxic effect on Vero cell, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) patterns. Eleven isolates (10 nontypeable, one O157:H7) carried stx gene and shared Stx restriction fragment length polymorphism (RFLP) patterns (stx1 ( + ), stx2 ( + )). Seven of these strains were isolated from acute diarrheal cases, and four were isolated from a control group (among which the only isolated STEC O157:H7). Two of the STEC strains harboured both eae and ehxA genes. Analysis of the cytotoxic effect on Vero cells showed that a correlation exists between carrying stx1 ( + ), stx2 ( + ) genes and cytotoxicity. Also a correlation was noticed between STEC strains recovered from different sources regarding plasmid profiles and PFGE patterns. All stool samples positive for STEC were nonbloody. None of the STEC-positive patients developed severe diseases. These data demonstrate that although STEC is not a major cause of acute diarrhea in Tunis, it should not be overlooked. Measures should be taken to improve the detection and isolation of STEC from acute diarrheal cases as well as carriers.  相似文献   

7.
The objectives of this study were to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) strains in wildlife that have spread in Europe, living near human settlements; to analyze their epidemiological role in maintenance and transmission to domestic livestock; and to assess the potential health risk of wildlife-carried strains. STEC strains were recovered from 53% of roe deer, 8.4% of wild boars, and 1.9% of foxes sampled in the northwest of Spain (Galicia). Of the 40 serotypes identified, 21 were classified as seropathotypes associated with human disease, accounting for 81.5% of the wildlife-carried STEC strains, including the enterohemorrhagic serotypes O157:H7-D-eae-γ1, O26:[H11]-B1-eae-β1, O121:H19-B1-eae-ε1, and O145:[H28]-D-eae-γ1. None of the wildlife-carried strains belonged to the highly pathogenic serotype O104:H4-B1 from the recent Germany outbreak. Forty percent of wildlife-carried STEC strains shared serotypes, phylogroups, intimin types, and Stx profiles with isolates from human patients from the same geographic area. Furthermore, wildlife-carried strains belonging to serotypes O5:HNM-A, O26:[H11]-B1, O76:H19-B1, O145:[H28]-D, O146:H21-B1, and O157:H7-D showed pulsed-field gel electrophoresis (PFGE) profiles with >85% similarity to human-pathogenic STEC strains. We also found a high level of similarity among STEC strains of serotypes O5:HNM-A, O26:[H11]-B1, and O145:HNM-D of bovine (feces and beef) and wildlife origins. Interestingly, O146:H21-B1, the second most frequently detected serotype in this study, is commonly associated with human diarrhea and isolated from beef and vegetables sold in Galicia. Importantly, at least 3 STEC isolates from foxes (O5:HNM-A-eae-β1, O98:[H21]-B1-eae-ζ1, and O146:[H21]-B1) showed characteristics similar to those of human STEC strains. In conclusion, roe deer, wild boar, and fox in Galicia are confirmed to be carriers of STEC strains potentially pathogenic for humans and seem to play an important role in the maintenance of STEC.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) strains isolated in Mangalore, India, were characterised by bead-enzyme-linked immunosorbent assay (bead-ELISA), Vero cell cytotoxicity assay, PCR and colony hybridisation for the detection of stx1 and stx2 genes. Four strains from seafood, six from beef and one from a clinical case of bloody diarrhoea were positive for Shiga toxins Stx1 and Stx2 and also for stx1and stx2 genes. The seafood isolates produced either Stx2 alone or both Stx1 and Stx2, while the beef isolates produced Stx1 alone. The stx1 gene of all the beef STEC was found to be of recently reported stx1c type. All STEC strains and one non-STEC strain isolated from clam harboured EHEC-hlyA. Interestingly, though all STEC strains were negative for eae gene, two STEC strains isolated from seafood and one from a patient with bloody diarrhoea possessed STEC autoagglutinating adhesion (saa) gene, recently identified as a gene encoding a novel autoagglutinating adhesion.  相似文献   

9.
A detailed analysis of the molecular epidemiology of non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) was performed by using isolates from sporadic cases of hemolytic-uremic syndrome (HUS), animal reservoirs, and food products. The isolates belonged to the O91 and OX3 serogroups and were collected in the same geographical area over a short period of time. Five typing methods were used; some of these were used to explore potentially mobile elements like the stx genes or the plasmids (stx(2)-restriction fragment length polymorphism [RFLP], stx(2) gene variant, and plasmid analyses), and others were used to study the whole genome (ribotyping and pulsed-field gel electrophoresis [PFGE]). The techniques revealed that there was great diversity among the O91 and OX3 STEC strains isolated in central France. A close relationship between strains of the same serotype having the same virulence factor pattern was first suggested by ribotyping. However, stx(2)-RFLP and stx(2) variant analyses differentiated all but 5 of 21 isolates, and plasmid analysis revealed further heterogeneity; a unique combination of characteristics was obtained for all strains except two O91:H21 isolates from beef. The latter strains were shown by PFGE to be the most closely related isolates, with >96% homology, and hence may be subtypes of the same strain. Overall, our results indicate that the combination of stx(2)-RFLP, stx(2) variant, and plasmid profile analyses is as powerful as PFGE for molecular investigation of STEC diversity. Finally, the non-O157:H7 STEC strains isolated from HUS patients were related to but not identical to those isolated from cattle and food samples in the same geographical area. The possibility that there are distinct lineages of non-O157:H7 STEC, some of which are more virulent for humans, should be investigated further.  相似文献   

10.
Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.  相似文献   

11.
Shiga toxin (Stx)-producing Escherichia coli (STEC) are important causes of diarrhoea and the haemolytic uremic syndrome (HUS). The most common STEC serotype implicated worldwide is E. coli O157:H7 that is diagnosed using procedures based on its typical phenotypic feature, the lack of sorbitol fermentation. In addition to E. coli O157:H7, a variety of non-O157:H7 STEC strains that usually ferment sorbitol and are thus missed by using the diagnostic protocol for E.coli O157:H7 have been isolated from patients. Among these sorbitol-fermenting (SF) non-O157:H7 STEC, SF E. coli O157:H and non-O157 STEC strains of serogroups O26, O103, O111 and O145 have emerged as significant causes of HUS and diarrhoea in continental Europe and have been associated with human disease in other parts of the world. Microbiological diagnosis of non-O157:H7 STEC strains is difficult due to their serotype diversity and the absence of a simple biochemical property that distinguishes such strains from the physiological intestinal microflora. Screening for non-O157:H7 STEC and their isolation from stools is presently based on the detection of Stx production or stx genes that are common characteristics of such strains. Molecular subtyping of the most frequent non-O157 STEC demonstrated that strains of serogroups O26, O103 and O111 belong to their own clonal lineages and show unique virulence profiles. SF STEC O157:H strains that have been isolated mostly in Central Europe represent a new clone within E. coli O157 serogroup which has its own typical combination of virulence factors. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
We undertook an epidemiologic study for the sensitivity of both Shiga-like toxin (Slt)-producing Escherichia coli (STEC) O157 and non-STEC O157 strains isolated from different patients with diarrhea to hydrochloric acid (HCl) and organic acids such as acetate, propionate, butyrate and lactate, and other pathogenic factors. The E. coli O157 isolates examined showed a wide variety of organic-acid susceptibility patterns. E. coli O157 isolates resistant to HCl or acetate were found more frequently than those resistant to other organic acids. These isolates also showed diverse pathogenicity patterns for the presence of the virulence genes, antibiotic susceptibility and plasmid profile.  相似文献   

13.
During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx)-producing Escherichia coli (STEC). Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the “Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.  相似文献   

14.
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.  相似文献   

15.
We have isolated Shiga toxin (Stx)-producing Escherichia coli (STEC) strains from the feces of feral pigeons which contained a new Stx2 variant gene designated stx(2f). This gene is most similar to sltIIva of patient E. coli O128:B12 isolate H.I.8. Stx2f reacted only weakly with commercial immunoassays. The prevalence of STEC organisms carrying the stx(2f) gene in pigeon droppings was 12.5%. The occurrence of a new Stx2 variant in STEC from pigeons enlarges the pool of Stx2 variants and raises the question whether horizontal gene transfer to E. coli pathogenic to humans may occur.  相似文献   

16.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

17.
AIMS: Isolation and recognition of the prominent Shiga toxin (Stx)-producing strains of Escherichia coli (STEC) serovar O157:H7 can be confirmed easily by their late fermentation of sorbitol and lack of beta-glucuronidase activity, but there has been no culture method of choice for detecting non-O157 STEC strains because of their biochemical diversity. Apart from Stx, many STEC strains produce enterohaemolysin (Ehly) regardless of their serovars. METHODS AND RESULTS: Although washed blood agar media, with or without the addition of antibiotics (vancomycin, cefixime, and cefsulodin) (WBA and WBVCCA), have been used to detect Ehly, a proportion of STEC strains consistently failed to produce haemolysin on these media. Washed blood agar medium was therefore studied further in order to increase the yield of strains producing Ehly. CONCLUSION: It was found that the addition of 0.5 microg ml(-1) of mitomycin C to the agar medium (WBMA) markedly increased the number of such strains. Thus, of 185 STEC strains comprising 95 O157 and 90 non-O157 STEC consisting of 34 serovars. Ninety-seven per cent of these strains produced haemolysis on WBMA, compared with only 76% and 83%, respectively, on WBA and WBVCCA. SIGNIFICANCE AND IMPACT OF THE STUDY: The appearance of the Ehly zone of haemolysis that was easily distinguishable from that of alpha-haemolysin was enhanced by the incorporation of mitimycin C into washed-blood medium.  相似文献   

18.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

19.
As it descended from Escherichia coli O55:H7, Shiga toxin (Stx)-producing E. coli (STEC) O157:H7 is believed to have acquired, in sequence, a bacteriophage encoding Stx2 and another encoding Stx1. Between these events, sorbitol-fermenting E. coli O157:H(-) presumably diverged from this clade. We employed PCR and sequence analyses to investigate sites of bacteriophage integration into the chromosome, using evolutionarily informative STEC to trace the sequence of acquisition of elements encoding Stx. Contrary to expectations from the two currently sequenced strains, truncated bacteriophages occupy yehV in almost all E. coli O157:H7 strains that lack stx(1) (stx(1)-negative strains). Two truncated variants were determined to contain either GTT or TGACTGTT sequence, in lieu of 20,214 or 18,895 bp, respectively, of the bacteriophage central region. A single-nucleotide polymorphism in the latter variant suggests that recombination in that element extended beyond the inserted octamer. An stx(2) bacteriophage usually occupies wrbA in stx(1)(+)/stx(2)(+) E. coli O157:H7, but wrbA is unexpectedly unoccupied in most stx(1)-negative/stx(2)(+) E. coli O157:H7 strains, the presumed progenitors of stx(1)(+)/stx(2)(+) E. coli O157:H7. Trimethoprim-sulfamethoxazole promotes the excision of all, and ciprofloxacin and fosfomycin significantly promote the excision of a subset of complete and truncated stx bacteriophages from the E. coli O157:H7 strains tested; bile salts usually attenuate excision. These data demonstrate the unexpected diversity of the chromosomal architecture of E. coli O157:H7 (with novel truncated bacteriophages and multiple stx(2) bacteriophage insertion sites), suggest that stx(1) acquisition might be a multistep process, and compel the consideration of multiple exogenous factors, including antibiotics and bile, when chromosome stability is examined.  相似文献   

20.
Escherichia coli O157:H7 is a Shiga toxin (stx)-producing E. coli (STEC) strain that has been classified as an adulterant in U.S. beef. However, numerous other non-O157 STEC strains are associated with diseases of various severities and have become an increasing concern to the beef industry, regulatory officials, and the public. This study reports on the prevalence and characterization of non-O157 STEC in commercial ground beef samples (n = 4,133) obtained from numerous manufacturers across the United States over a period of 24 months. All samples were screened by DNA amplification for the presence of Shiga toxin genes, which were present in 1,006 (24.3%) of the samples. Then, culture isolation of an STEC isolate from all samples that contained stx(1) and/or stx(2) was attempted. Of the 1,006 positive ground beef samples screened for stx, 300 (7.3% of the total of 4,133) were confirmed to have at least one strain of STEC present by culture isolation. In total, 338 unique STEC isolates were recovered from the 300 samples that yielded an STEC isolate. All unique STEC isolates were serotyped and were characterized for the presence of known virulence factors. These included Shiga toxin subtypes, intimin subtypes, and accessory virulence factors related to adherence (saa, iha, lifA), toxicity (cnf, subA, astA), iron acquisition (chuA), and the presence of the large 60-MDa virulence plasmid (espP, etpD, toxB, katP, toxB). The isolates were also characterized by use of a pathogenicity molecular risk assessment (MRA; based on the presence of various O-island nle genes). Results of this characterization identified 10 STEC isolates (0.24% of the 4,133 total) that may be considered a significant food safety threat, defined by the presence of eae, subA, and nle genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号