首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The theory of biological evolution is defined in many ways, leading to considerable confusion in its application and testing against objective empirical observations. Evolutionary change is usually defined as genetic which would exclude both cultural and template evolution; hence the qualifying adjective genetic should not be included in the definition of biological evolution. Darwin's theory, always described by him in the singular, is actually a bundle of five independent theories about evolution as advocated by Mayr. Furthermore only one of these theories, that of common descent, is historical, and the other four – evolution as such, gradualism, processes of phyletic evolution and of speciation, and causes of evolution – are nomological. Hence not all evolutionary theory is historical. Biological comparisons can be divided into horizontal and vertical ones and valid conclusions from one type of comparisons cannot be automatically extrapolated to the other. All phyletic evolutionary change, no matter how extensive it may be, never crosses species taxa boundaries; hence it is not possible to distinguish ‘trans‐specific evolution’ (= evolution beyond or above the level of the species) from evolution within the species level. Macroevolution does not differ from microevolution except in the scale of the overall change; no special causes or processes of macroevolution exist.  相似文献   

2.
Ernst Mayr’s concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.  相似文献   

3.
The relevance of the Modern Evolutionary Synthesis to the foundations of taxonomy (the construction of groups, both taxa and phyla) is reexamined. The nondimensional biological species concept, and not the multidimensional, taxonomic, species notion which is based on it, represents a culmination of an evolutionary understanding. It demonstrates how established evolutionary mechanisms acting on populations of sexually reproducing organisms provide the testable ontological basis of the species category. We question the ontology and epistemology of the phylogenetic or evolutionary species concept, and find it to be a fundamentally untenable one. We argue that at best, the phylogenetic species is a taxonomic species notion which is not a theoretical concept, and therefore should not serve as foundation for taxonomic theory in general, phylogenetics, and macroevolutionary reconstruction in particular. Although both evolutionary systematists and cladists are phylogeneticists, the reconstruction of the history of life is fundamentally different in these two approaches. We maintain that all method, including taxonomic ones, must fall out of well corroborated theory. In the case of taxonomic methodology the theoretical base must be evolutionary. The axiomatic assumptions that all phena, living and fossil, must be holophyletic taxa (species, and above), resulting from splitting events, and subsequently that evaluation of evolutionary change must be based on a taxic perspective codified by the Hennig ian taxonomic species notion, are not testable premises. We discuss the relationship between some biologically, and therefore taxonomically, significant patterns in nature, and the process dependence of these patterns. Process-free establishment of deductively tested “genealogies” is a contradiction in terms; it is impossible to “recover” phylogenetic patterns without the investment of causal and processual explanations of characters to establish well tested taxonomic properties of these (such as homologies, apomorphies, synapomorphies, or transformation series). Phylogenies of either characters or of taxa are historical-narrative explanations (H-N Es), based on both inductively formulated hypotheses and tested against objective, empirical evidence. We further discuss why construction of a “genealogy”, the alleged framework for “evolutionary reconstruction”, based on a taxic, cladistic outgroup comparison and a posteriori weighting of characters is circular. We define how the procedure called null-group comparison leads to the noncircular testing of the taxonomic properties of characters against which the group phylogenies must be tested. This is the only valid rooting procedure for either character or taxon evolution. While the Hennig -principle is obviously a sound deduction from the theory of descent, cladistic reconstruction of evolutionary history itself lacks a valid methodology for testing transformation hypotheses of both characters and species. We discuss why the paleontological method is part of comparative biology with a critical time dimension ana why we believe that an “ontogenetic method” is not valid. In our view, a merger of exclusive (causal and interactive, but best described as levels of organization) and inclusive (classificatory) hierarchies has not been accomplished by a taxic scheme of evolution advocated by some. Transformational change by its very nature is not classifiable in an inclusive hierarchy, and therefore no classification can fully reflect the causal and interactive chains of events constituting phylogeny, without ignoring and contradicting large areas of corroborated evolutionary theory. Attempts to equate progressive evolutionary change with taxic schemes by Haeckel were fundamentally flawed. His ideas found 19th century expression in a taxic perception of the evolutionary process (“phylogenesis”), a merger of typology, hierarchic and taxic notions of progress, all rooted in an ontogenetic view of phylogeny. The modern schemes of genealogical hierarchies, based on punctuation and a notion of “species” individuality, have yet to demonstrate that they hold promise beyond the Haeckel ian view of progressive evolution.  相似文献   

4.
High-level debates in evolutionary biology often treat the Modern Synthesis as a framework of population genetics, or as an intellectual lineage with a changing distribution of beliefs. Unfortunately, these flexible notions, used to negotiate decades of innovations, are now thoroughly detached from their historical roots in the original Modern Synthesis (OMS), a falsifiable scientific theory. The OMS held that evolution can be adequately understood as a process of smooth adaptive change by shifting the frequencies of small-effect alleles at many loci simultaneously, without the direct involvement of new mutations. This shifting gene frequencies theory was designed to support a Darwinian view in which the course of evolution is governed by selection, and to exclude a mutation-driven view in which the timing and character of evolutionary change may reflect the timing and character of events of mutation. The OMS is not the foundation of current thinking, but a special case of a broader conception that includes (among other things) a mutation-driven view introduced by biochemists in the 1960s, and now widely invoked. This innovation is evident in mathematical models relating the rate of evolution directly to the rate of mutation, which emerged in 1969, and now represent a major branch of theory with many applications. In evo-devo, mutationist thinking is reflected by a concern for the “arrival of the fittest”. Though evolutionary biology is not governed by any master theory, and incorporates views excluded from the OMS, the recognition of these changes has been hindered by woolly conceptions of theories, and by historical accounts, common in the evolutionary literature, that misrepresent the disputes that defined the OMS. Reviewers: This article was reviewed by W. Ford Doolittle, Eugene Koonin and J. Peter Gogarten.  相似文献   

5.
Bock WJ 《Zoological science》2003,20(3):279-289
Darwin in his On the Origin of species made it clear that evolutionary change depends on the combined action of two different causes, the first being the origin of genetically based phenotypic variation in the individual organisms comprising the population and the second being the action of selective agents of the external environment placing demands on the individual organisms. For over a century following Darwin, most evolutionists focused on the origin of inherited variation and its transmission; many workers continue to regard genetics to be the core of evolutionary theory. Far less attention has been given to the exact nature of the selective agents with most evolutionists still treating this cause imprecisely to the detriment of our understanding of both nomological and historical evolutionary theory. Darwin was vague in the meaning of his new concept of "Natural Selection," using it interchangeably as one of the causes for evolutionary change and as the final outcome (= evolutionary change). In 1930, natural selection was defined clearly as "non-random, differential reproduction of genes" by R. Fisher and J.B.S. Haldane which is a statement of the outcome of evolutionary process and which omits mention of the causes bringing about this change. Evolutionists quickly accepted this outcome definition of natural selection, and have used interchangeably selection both as a cause and as the result of evolutionary change, causing great confusion. Herein, the details will be discussed of how the external environment (i.e., the environment-phenotype interaction) serves as selective agents and exerts demands on the phenotypic organisms. Included are the concepts of fitness and of the components of fitness (= adaptations) which are respectively (a) survival, (b) direct reproductive and (c) indirect reproductive features. Finally, it will be argued that historical-narrative analyses of organisms, including classification and phylogenetic history, are possible only with a full understanding of nomological evolutionary theory and with functional/adaptive studies of the employed taxonomic features in addition to the standard comparative investigations.  相似文献   

6.
Regarding such an important issue as our origin, as well as the origin of all biological diversity, it is surprising to realize that evolution still faces drawbacks in keeping its deserved notability as a unifying theory in biology. This does not happen because evolutionism lacks validity as a scientific theory, but rather because of several misconceptions regarding evolutionary biology that were and continue to be found in elementary and secondary education. Furthermore, mistaken evolutionary ideas also affect some philosophical and social issues. The aim of the present study was to evaluate knowledge about evolution among freshman students from distinct majoring areas at Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Brazil. The research was carried out based on a ten-question questionnaire about evolution with distinct levels of difficulty, comprising the most observed misconceptions. In this study, 231 students attending classes in biological sciences (morning and evening schedule), exact sciences (agronomy, physics, chemistry, and math), and human sciences (history, geography, and pedagogy) were interviewed. The total average of right answers was 48.8%, and the highest average per course obtained was 58.7% from the students attending biological sciences (evening schedule). Although evolutionary biology and ecology are supposed to represent teaching guide issues according to the recommendations of the National Curricular Parameters for the Secondary School, the data obtained suggest that the evidence for evolution, the role of natural selection and random events, as well as the sources of variation, must be better focused at schools.  相似文献   

7.
8.
9.
The problems of comparative analyses in biology have been discussed, showing that a single comparative method does not exist. Several principles of comparison are elucidated, which include that comparisons do not have to possess a phylogenetic basis, can be horizontal or vertical, and can be genetic or nongenetic. Biological comparisons can be grouped roughly into historical and nonhistorical ones. Historical comparisons depend on the details of evolutionary theory, and include: (a) comparisons on which phylogenies and classifications are based; and (b) comparative studies using these phylogenies and classifications. Nonhistorical comparisons require pertinent nomological relationships between two or more variables, and include: (a) comparisons between variables used to elucidate these law-like relationships; and (b) comparisons in which unknown properties of one variable are deduced from the known properties of other variables - extrapolations made in biology.  相似文献   

10.
The popular defense of intelligent design/creationism (ID) theories, as well as theories in evolutionary biology, especially from the perspective that both are worthy of scientific consideration, is that empirical evidence has been presented that supports both. Both schools of thought have had a tendency to rely on the same class of evidence, namely, the observations of organisms that are in need of being explained by those theories. The result is conflation of the evidence that prompts one to infer hypotheses applying ID or evolutionary theories with the evidence that would be required to critically test those theories. Evidence is discussed in the contexts of inferring theories/hypotheses, suggesting what would be possible tests, and actual testing. These three classes of inference being abduction, deduction, and induction, respectively. Identifying these different inferential processes in evolutionary biology and ID allow for showing that the evidence to which theories and hypotheses provide understanding cannot be the same evidence supporting those theories and hypotheses. This clarification provides a strong criterion for showing the inability of an ID theory to be of utility in the ongoing process of acquiring causal understanding, that is the hallmark of science.  相似文献   

11.
ABSTRACT. In recent years the teaching of the religiously based philosophy of intelligent design (ID) has been proposed as an alternative to modern evolutionary theory. Advocates of ID are largely motivated by their opposition to naturalistic explanations of biological diversity, in accordance with their goal of challenging the philosophy of scientific materialism. Intelligent design has been embraced by a wide variety of creationists who promote highly questionable claims that purport to show the inadequacy of evolutionary theory, which they consider to be a threat to a theistic worldview. We find that examples from protistan biology are well suited for providing evidence of many key evolutionary concepts, and have often been misrepresented or roundly ignored by ID advocates. These include examples of adaptations and radiations that are said to be statistically impossible, as well as examples of speciation both in the laboratory and as documented in the fossil record. Because many biologists may not be familiar with the richness of the protist evolution dataset or with ID‐based criticisms of evolution, we provide examples of current ID arguments and specific protistan counter‐examples.  相似文献   

12.
The theoretical bases and approaches of cladistics and some specific problems that, directly or indirectly, rely on cladistic analysis for their revolution, are outlined and discussed. Seven sections comprise this paper: a ) the philosophical foundation of cladistics; b) the theoretical tenets of cladistics; c) the operational procedure of cladisties; d) three schools of classification; e) cladistics and biogeography; f) cladistics and hybrid recognition; and g) is cladistic systematics a scientific theory ? Considerations of scientific methodology involve philosophical questions. From this point, Popper'falsificationism serves a good foundation. Popper emphasizes that all scientific knowledge is hypothetical-deductive, consisting of general statements (theories) that can never be confirmed or verified but only falsified. The theories, that can be tested most effectively, are preferable. Cladistics, aiming at generating accurately expressed and strictly testable systematic hypotheses, is well compatible with this requirement. The principles central to the cladistic theory and methodology are: the Principle of Synapomorphy; the Principle of Strict Monophyly; and the Principle of Strict Parsimony. The first requires forming nested groups by nesting statements about shared evolutionary novelties (synapomorphy) postulated from observed similarities and is the primary one. The second is mainly methodological, subject to modification and compromise. The principle of strict parsimony specifies the most preferable hypothesis (namely the one exhibiting the most congruence in the synapomorphy pattern). The operational procedure that might be followed in formulating and testing hypotheses of the synapomorphy pattern (the cladogram itself) consists of five steps. The erections of monophyletic groups, to a greater or lesser extent, rely on the hypothesis of the previous systematic studies and is the starting point for cladistic analysis. Character analysis, which focuses on character distribution and determination of the polarities, decides the reconstructed phylogeny. A detailed discussion on the methodological principles for identifying transformation sequence is presented. Many algorithms have been designated to infer the cladogram, and are basically of parsimony techniques and Compatibility techiques. The thus yielded cladograms, with their expected pattern of congruent synapomorphies, are tests of a particular hypothesis of synapomorphy and reciprocally synapomorphies are tests of cladistic hypothesis (cladogram). Such reciprocity is a strong stimulus to profound understanding on phylogenetic process and phyletic relationships. The cladogram and the Linnaean classification have the identical logic structure and the set-membership of the two can be made isomorphic. There are three principal approaches to biological classification : cladistics, phenetics and evolutionary classification. Cladistics is the determination of the branching pattern of evolution, and in the context of classification, the development of nested sets based on cladograms. Phenetics is the classification by overall similarities, without regard to evolutionary considerations. Evolutionary classification attempts to consider all meaningful aspects of phylogeny and to use these for making a classification. The last approach has been done intuitively, without explicit methods. An enumeration of their differences and a discussion on their relative merits are presented. Three theoretical approaches have been proposed for interpreting biogeographical history: the phylogenetic theory of biogeography, classical evolutionary biogeography and vicariance biogeography. The former two show some similarities in that they usually look upon biogeography in terms of centers of origin and dispersal from the centers. But the first puts a strong emphasis on the construction of hypotheses about the phylogenetic relationships of the organisms in question and the subsequent inference of their geographic relationships; the second advocates a theory which does not have a precise deductive link with phylogenetic construction and often results in wildly narratative-type hypotheses. The vicariance approach de-emphasizes the concepts of centers of origin and dispersal and attempts to analyse distribution patterns in terms of subdivision (vicariance) of ancestral biotas. The development of the theory of plate tectonics and its universal acceptance enormously stimulate biogeographers to look at the world's continents and oceans from a mobilist point, which, along with the establishment of the rigorous tool of the phylogenetic analysis (cladistics), profoundly reshapes the above three theories. Hybridization and polyploidy are outstanding features of many plant groups. But hybridization, or reticulate evolution, is inconsistent with the basic concepts of cladistics which is an ever-branching pattern. Cladists have suggested several approaches. One of them analyses all the taxa by a standard cladistic procedure and closely examines the cladograms for polytomies and character conflicts that may indicate possible hybrids. Such generated hypothesis of hybridization can be corroborated or falsified by other forms of data, such as distribution, polyploidy, karyotype and pollen fertility. There are three criteria to justify a theory to be scientific: a) whether it is a theory composed of hypotheses strictly falsifiable; b) whether it has predictive effect; and c) whether it has a explanatory value. Cladistic systematics aims at generating cladograms, which are hypotheses of the nested pattern of synapomorphy, phylogenetic process and phyletic relationships, susceptible to testing by postulated synapomorphies. The predictive effect of systematics relies on the acceptance of hypotheses of congruence about the correlation of characters, which has been well founded. For non-systematic biologists, phylogenetic classification can be used as axiom to form a preliminary and fundamental explanation.  相似文献   

13.
In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and the important historical questions of evolutionary biology in its scientific context is recommended.  相似文献   

14.
This paper reviews the scientific career of Rupert Riedl and his contributions to evolutionary biology. Rupert Riedl, a native of Vienna, Austria, began his career as a marine biologist who made important contributions to the systematics and anatomy of major invertebrate groups, as well as to marine ecology. When he assumed a professorship at the University of North Carolina in 1968, the predominant thinking in evolutionary biology focused on population genetics, to the virtual exclusion of most of the rest of biology. In this atmosphere Riedl developed his "systems theory" of evolution, which emphasizes the role of functional and developmental integration in limiting and enabling adaptive evolution by natural selection. The main objective of this theory is to account for the observed patterns of morphological evolution, such as the conservation of body plans. In contrast to other "alternative" theories of evolution, Riedl never denied the importance of natural selection as the driving force of evolution, but thought it necessary to contextualize natural selection with the organismal boundary conditions of adaptation. In Riedl's view development is the most important factor besides natural selection in shaping the pattern and processes of morphological evolution.  相似文献   

15.
Textbooks on the history of biology and evolutionary thought do not mention the evolutionary ideas of Muslim scholars before Darwin’s time. This is part of a trend in the West to minimise the contributions of non-Western scientists to biology, human anatomy and evolutionary biology. Therefore, this paper focuses on the contributions of pre-Darwinian Muslim scholars to the history of evolutionary thought. Our review of texts from a wide range of historical times, and written in various languages, reveals that there were in fact several Muslim scholars who postulated evolutionary ideas, some with remarkable similarities to Darwin’s theory. These ideas included the adaptation and survival of the fittest, a specific origin of humans from apes/monkeys, the notion of evolutionary constraints, the occurrence of extinctions within taxa and hereditary variability. Moreover, while both the scientific community and the broader public generally base their knowledge on Western textbooks, several parts of the Muslim world have indicated an overall rejection of biological–including human–evolution. Therefore, to improve historical accuracy and create a better understanding of scientific history, the world’s diverse civilisations and their philosophies, this untold story should be widely disseminated to the scientific community and the general public.  相似文献   

16.
Singh RS 《Génome》2011,54(10):868-873
Cosmology and evolution together have enabled us to look deep into the past and comprehend evolution-from the big bang to the cosmos, from molecules to humans. Here, I compare the nature of theories in biology and physics and ask why physical theories get accepted by the public without necessarily comprehending them but biological theories do not. Darwin's theory of natural selection, utterly simple in its premises but profound in its consequences, is not accepted widely. Organized religions, and creationists in particularly, have been the major critic of evolution, but not all opposition to evolution comes from organized religions. A great many people, between evolutionary biologists on one hand and creationists on the other, many academics included, who may not be logically opposed to evolution nevertheless do not accept it. This is because the process of and the evidence for evolution are invisible to a nonspecialist, or the theory may look too simple to explain complex traits to some, or because people compare evolution against God and find evolutionary explanations threatening to their beliefs. Considering how evolution affects our lives, including health and the environment to give just two examples, a basic course in evolution should become a required component of all our college and university educational systems.  相似文献   

17.
Many students reject evolutionary theory, whether or not they adequately understand basic evolutionary concepts. We explore the hypothesis that accepting evolution is related to understanding the nature of science. In particular, students may be more likely to accept evolution if they understand that a scientific theory is provisional but reliable, that scientists employ diverse methods for testing scientific claims, and that relating data to theory can require inference and interpretation. In a study with university undergraduates, we find that accepting evolution is significantly correlated with understanding the nature of science, even when controlling for the effects of general interest in science and past science education. These results highlight the importance of understanding the nature of science for accepting evolution. We conclude with a discussion of key characteristics of science that challenge a simple portrayal of the scientific method and that we believe should be emphasized in classrooms.  相似文献   

18.
I have argued elsewhere that scientific realism is most significantly challenged neither by traditional arguments from underdetermination of theories by the evidence, nor by the traditional pessimistic induction, but by a rather different historical pattern: our repeated failure to conceive of alternatives to extant scientific theories, even when those alternatives were both (1) well-confirmed by the evidence available at the time and (2) sufficiently scientifically serious as to be later embraced by actual scientific communities. Here I use August Weismann's defense of his influential germ-plasm theory of inheritance to support my claim that this pattern characterizes the history of theoretical scientific investigation generally. Weismann believed that the germ-plasm must become disintegrated into its constituent elements over the course of development, I argue, only because he failed to conceive of any possible alternative mechanism of ontogenetic differentiation. This and other features of the germ-plasm theory, I suggest, reflect a still more fundamental failure to imagine that the germ-plasm might be a productive rather than expendable resource for the cell. Weismann's case provides impressive support for the problem of unconceived alternatives while rendering its challenge to scientific realism deeper and sharper in a number of important ways.  相似文献   

19.
SYNOPSIS. Notions of functional and behavioral transformationsamong traits of similar organisms are ad hoc unless viewed withinthe context of a corroborated scheme of relationships of thetaxa involved. For purposes of exposition a current best estimateof the interrelationships of the main groups of teleosts (asexpressed by a branching diagram or cladogram) is used as abasis for evaluating the transformations of feeding and locomotormechanisms. When the various states of these mechanisms areincorporated into the branching structure, the cladogram, wheninterpreted historically, specifies certain conceptual constraintssuch that, 1) specializations of the upper jaw first arose andproliferated before specializations of the paired fins, and2) that fin spines arose only after changes in both feedingand locomotor mechanisms were well under way. These resultsare contrasted with familiar though unsupported adaptationiststatements about the relative importance of locomotor and feedingmechanisms for the evolution of the spiny-finned teleosts (acanthopterygians)—acontrast between the interpretation of what happened as opposedto why it happened. The particular reasons why a given structure,function or behavior exists are unknowable and theories addressingsuch questions are untestable. Adaptationist arguments in generalare framed in terms of forces external to the organism whichimpose a process of change that leads to good design. The conceptof an external agency or process (such as selection) that candesign structures or whole organisms to fit their environments,even when stated in rigorously biological language, are effectivelythe same, and almost as far removed from the empirical data,as the creationist argument for adaptation. To the extent thatthe empirical data of systematics are not allowed to constrainthe evolutionary interpretation of functional anatomists, theirexplanation of historical change will be limited only by theirown inventiveness and the gullibility of their audience.  相似文献   

20.
We present an evolutionary game theory. This theory differs in several respects from current theories related to Maynard Smith's pioneering work on evolutionary stable strategies (ESS). Most current work deals with two person matrix games. For these games the strategy set is finite. We consider evolutionary games which are defined over a continuous strategy set and which permit any number of players. Matrix games are included as a bilinear continuous game. However, under our definition, such games will not posses an ESS on the interior of the strategy set. We extend previous work on continuous games by developing an ESS definition which permits the ESS to be composed of a coalition of several strategies. This definition requires that the coalition must not only be stable with respect to perturbations in strategy frequencies which comprise the coalition, but the coalition must also satisfy the requirement that no mutant strategies can invade. Ecological processes are included in the model by explicitly considering population size and density dependent selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号