首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A growing body of evidence indicates that second‐generation energy crops can play an important role in the development of renewable energy and the mitigation of climate change. However, dedicated energy crops have yet to be domesticated in order to fully realize their productive potential under unfavorable soil and climatic conditions. To explore the possibility of domesticating Miscanthus crops in northern China where marginal and degraded land is abundant, we conducted common garden experiments at multiple locations to evaluate variation and adaptation of three Miscanthus species that are likely to serve as the wild progenitors of the energy crops. A total of 93 populations of Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus lutarioriparius were collected across their natural distributional ranges in China and grown in three locations that represent temperate grassland with cold winter, the semiarid Loess Plateau, and relatively warm and wet central China. Evaluated with growth traits such as plant height, tiller number, tiller diameter, and flowering time, the Miscanthus species showed high levels of genetic variation within and between species. There were significant site × population interactions for almost all traits of M. sacchariflorus and M. sinensis, but not M. lutarioriparius. The northern populations of M. sacchariflorus had the highest establishment rates at the most northern site owing to their strong cold tolerance. An endemic species in central China, M. lutarioriparius, produced not only the highest biomass of the three species but also higher biomass at the Loess Plateau than the southern site near its native habitats. These results demonstrated that the wild species harbored a high level of genetic variation underlying traits important for crop establishment and production at sites that are colder and drier than their native habitats. The natural variation and adaptive plasticity found in the Miscanthus species indicated that they could provide valuable resources for the development of second‐generation energy crops.  相似文献   

2.
Information on genome size, ploidy level, and genomic polymorphisms among accessions of the genus Miscanthus can assist in taxonomic studies, help understand the evolution of the genus, and provide valuable information to biomass crop improvement programs. Taxonomic investigation combining variation in plant morphology, genome size, chromosome numbers, and simple sequence repeat (SSR) marker polymorphisms were applied to characterize 101 Miscanthus accessions. A total of 258 amplicons generated from 17 informative SSR primer pairs was subjected to cluster and principal coordinate analysis and used to characterize genetic variation and relationships among 31 Miscanthus accessions, including four interspecific Miscanthus hybrids created from controlled pollinations, and four Saccharum, six Erianthus, and one Sorghum bicolor accessions. Miscanthus accessions were distinct from accessions in the genera Erianthus and Saccharum. Miscanthus accessions fell into five taxonomic groups, including the existing taxonomic section Miscanthus, diploid and tetraploid Miscanthus sacchariflorus, and a fourth (M. × giganteus) and fifth group (Miscanthus ‘purpurascens’); the last two being intermediate forms. In contrast to previous work, our findings suggest diploid and tetraploid M. sacchariflorus are taxonomically different, the latter more closely related to M. sacchariflorus var lutarioriparius. We also suggest that Miscanthus ‘purpurascens’ accessions are interspecific hybrids between Miscanthus sinensis and diploid M. sacchariflorus based on DNA content and SSR polymorphisms. The evolution of Miscanthus and related genera is discussed based on combined analysis and geographical origin.  相似文献   

3.
With the growing shortage of oil, coal, and other traditional fossil fuels, scientists in various fields have been looking for new fuel sources to solve the energy crisis. The genus Miscanthus is an ideal biofuel crop due to its rapid vegetative growth and its potential for high biomass yields. Plant regeneration through somatic embryogenesis is a viable method to achieve large-scale production of plant biomass. Callus induction from immature inflorescences of five Miscanthus species was performed on two different media, and the relative rates of callus proliferation were calculated. The highest multiplication coefficient, 3.92, was obtained with M. sacchariflorus ssp. lutarioriparius when the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) in the medium was 4.0 mg/L, and this species also performed the best at the induction phase. The proliferation coefficient for M. floridulus increased to 3.19 when the concentration of 2,4-D was decreased from 4.0 to 2.0 mg/L. When the concentration of 2,4-D was 2.0 mg/L, the proliferation coefficient for M. sinensis was 2.47. In M. sacchariflorus, the proliferation coefficients were 2.89 and 2.49 for the lower and higher concentrations of 2,4-D, respectively. The multiplication coefficient of M. x giganteus was 2.60 on medium containing 4.0 mg/L 2,4-D. Three different regeneration media were tested to induce shoots in vitro. M. floridulus and M. sacchariflorus regenerated shoots at 100% frequency in three different regeneration media. The regeneration rate for M. sacchariflorus ssp. lutarioriparius reached 99.0% on medium containing 4.0 mg/L?N 6 -Benzylaminopurine (6-BA) and 0.1 mg/L α-Naphthaleneacetic acid (NAA). The best regeneration rate of M. sinensis was 35.2% using 2.0 mg/L 6-BA and 0.3 mg/L NAA, whereas the regeneration rate of M. x giganteus was 57.4% on medium supplemented with 3.0 mg/L 6-BA and 0.2 mg/L NAA. The in vitro-derived plantlets of all five species had 100% rooting rates on basal MS medium without supplementation. The survival rates of plantlets were above 90% for each species when subsequently grown outdoors.  相似文献   

4.
Miscanthusgiganteus, a triploid hybrid between tetraploid M. sacchariflorus and diploid M. sinensis, has considerable potential as a bioenergy crop. Currently only one genotype is widely cultivated, increasing its vulnerability to diseases during production. Finding new hybrids is important to broaden genetic resources of M. ×giganteus. Three putative triploid hybrids were discovered in a sympatric population of tetraploid M. sacchariflorus and diploid M. sinensis in Kushima, Japan. The hybrid nature of the triploids was determined by morphological analysis and sequencing the ribosomal DNA internal transcribed spacer (ITS) region. The triploids had awns on their florets, which is a common characteristic of diploid M. sinensis, and sheath hairs, which is typical of tetraploid M. sacchariflorus. All triploids showed heterozygosity in their ribosomal DNA ITS sequences. Based on these results, it is confirmed that the triploids are hybrids and novel genotypes of M. ×giganteus. Natural crossing between tetraploid M. sacchariflorus × diploid M. sinensis may also lead to the production of tetraploid hybrids. ITS analysis of tetraploid plants showed that one maternal parent of the triploid hybrids, K-Ogi-1, had heterozygous ITS, which was different than the other analyzed tetraploid, M. sacchariflorus. Thus, K-Ogi-1 was likely of hybrid origin. These tetraploid hybrids can also be utilized as parents in M. ×giganteus breeding. Since all hybrids identified in this study had tetraploid M. sacchariflorus as maternal parents, collecting and analyzing seeds from tetraploid M. sacchariflorus in sympatric areas could be an effective strategy to identify natural Miscanthus hybrids that can be used as bioenergy crops.  相似文献   

5.
6.
A simple, efficient protocol for direct in vitro shoot organogenesis and regeneration was established for three species of Miscanthus including two clones of Miscanthus x giganteus, one clone of M. sinensis and one clone of M. sacchariflorus. Shoots were induced from the axillary nodes of both M. x giganteus and M. sacchariflorus and from apical meristems of both M. sinensis and M. sacchariflorus. A tillering method was used to accelerate shoot proliferation. Shoots were rooted in a wet perlite substrate in pots in the greenhouse. Subsequently, rooted plants were transferred to the field. The genetic uniformity of regenerated plants was evaluated using amplified fragment length polymorphism analysis and compared to that of rhizome-propagated plants. A total of 33,443 fragments were generated, representing 869 markers. There were 21 fragments (0.06 % of the fragments) or 19 markers (2.19 % of the markers) that were polymorphic, and almost all of these were singletons. The three species showed similar polymorphisms. Genetic variability was also found in the rhizome-propagated plants, sometimes at a higher rate than in the in vitro culture, indicating that the genetic uniformity was not altered by the protocol. This protocol may help breeders produce new clones of Miscanthus in the future.  相似文献   

7.
Plants from the genus Miscanthus are potential renewable sources of lignocellulosic biomass for energy production. A potential strategy for Miscanthus crop improvement involves interspecific manipulation of ploidy levels to generate superior germplasm and to circumvent reproductive barriers for the introduction of new genetic variation into core germplasm. Synthetic autotetraploid lines of Miscanthus sacchariflorus and Miscanthus sinensis, and autoallohexaploid Miscanthus x giganteus were produced in tissue culture from oryzalin treatments to seed‐ and immature inflorescence‐derived callus lines. This is the first report of the genome doubling of diploid M. sacchariflorus. Genome doubling of diploid M. sinensis, M. sacchariflorus, and triploid M. x giganteus to generate tetraploid and hexaploid lines was confirmed by stomata size, nuclear DNA content, and chromosome counts. A putative pentaploid line was also identified among the M. x giganteus synthetic polyploid lines by nuclear DNA content and chromosome counts. Comparisons of phenotypic performance of synthetic polyploid lines with their diploid and triploid progenitors in the greenhouse found species‐specific differences in plant tiller number, height, and flowering time among the doubled lines. Stem diameter tended to increase after polyploidization but there were no significant improvements in biomass traits. Under field conditions, M. x giganteus synthetic hexaploid lines showed greater phenotypic variation, in terms of plant height, stem diameter, and tiller number, than their progenitor lines. Production of synthetic autopolyploid lines displaying significant phenotypic variation suggests that ploidy manipulation can introduce useful genetic diversity in the limited Miscanthus germplasm currently available in the United States. The role of polyploidization in the evolution and breeding of the genus Miscanthus is discussed.  相似文献   

8.
9.
Senescence impacts the harvestable biomass yield and quality in Miscanthus. Very early autumn senescence shortens the canopy duration reducing yield potential. When senescence is too late or slow, the crop does not ripen sufficiently before harvest, resulting in high moisture and nutrient offtakes that reduce biomass quality. In this study, variation in senescence was monitored over 3?years in a trial of 244 Miscanthus genotypes planted in four replicate blocks. The experiment comprised 199 genotypes of Miscanthus sinensis, 36 genotypes of Miscanthus sacchariflorus, and 9 genotypes of Miscanthus?×?giganteus. On average, M. sinensis genotypes remained greener for longer than M. sacchariflorus genotypes. There was a strong correlation between senescence and moisture content at harvest in 2007 and 2008 (R 2?=?0.59, R 2?=?0.57, respectively; n?=?244). The senescence rate of M.?×?giganteus, an interspecific hybrid between M. sinensis and M. sacchariflorus, was found to lie between the two parental species groups. Environmental signals likely to be involved in the timing and rate of senescence, such as variation in photoperiod and thermal time that occurred through the growing season were investigated. Interactions between individual environmental signals and senescence were difficult to separate. The majority of plants senesced consistently between replicate blocks, and rank order was mostly consistent across all years suggesting strong genotypic control of senescence. This study provides valuable information for the future optimisation of Miscanthus, and potentially other energy grasses, where new varieties are needed to maximise net energy yields and crop quality for different end uses in different global regions.  相似文献   

10.
Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.  相似文献   

11.
We present SSR-based genetic maps from a cross between Miscanthus sacchariflorus Robustus and M. sinensis, the progenitors of the promising cellulosic biofuel feedstock Miscanthus × giganteus. cDNA-derived SSR markers were mapped by the two-way pseudo-testcross model due to the high heterozygosity of each parental species. A total of 261 loci were mapped in M. sacchariflorus, spanning 40 linkage groups and 1,998.8 cM, covering an estimated 72.7% of the genome. For M. sinensis, a total of 303 loci were mapped, forming 23 linkage groups and 2,238.3 cM, covering 84.9% of the genome. The use of cDNA-derived SSR loci permitted alignment of the Miscanthus linkage groups to the sorghum chromosomes, revealing a whole genome duplication affecting the Miscanthus lineage after the divergence of subtribes Sorghinae and Saccharinae, as well as traces of the pan-cereal whole genome duplication. While the present maps provide for many early research needs in this emerging crop, additional markers are also needed to improve map density and to further characterize the structural changes of the Miscanthus genome since its divergence from sorghum and Saccharum.  相似文献   

12.
The development of second‐generation energy crops on marginal land relies on the identification of plants with suitable physiological properties. In this study, we measured and compared leaf photosynthesis and water use efficiency of 22 populations from three Miscanthus species, M. lutarioriparius, M. sacchariflorus, and M. sinensis, planted in two experimental fields located in Qingyang of the Gansu Province (QG) and Jiangxia of the Hubei Province (JH) in China. QG is located in the Loess Plateau, one of the world's most seriously eroded regions particularly abundant in semiarid marginal land. At both locations, M. lutarioriparius produced the highest biomass and had the highest photosynthetic rates (A), with the growing‐season average of A reaching nearly 20 μmol m?2 s?1. Native to JH, M. lutarioriparius maintained a relatively high photosynthetic rate into the late growing stage in QG, for example, 15 μmol m?2 s?1 at temperature as low as 11.6 °C in October. All three species had higher water use efficiency (WUE) in semiarid QG than in warmer and wetter JH. In the late growing stage of M. lutarioriparius, instantaneous WUE (A/E) of the species nearly tripled in QG comparing to JH. Being able to maintain remarkably high photosynthetic rates when transplanted to a colder and drier location, these M. lutarioriparius populations serve as suitable wild progenitors for energy crop domestication in the Loess Plateau and other areas with the similar climates.  相似文献   

13.
Miscanthus is a high-yielding bioenergy crop that is broadly adapted to temperate and tropical environments. Commercial cultivation of Miscanthus is predominantly limited to a single sterile triploid clone of Miscanthus × giganteus, a hybrid between Miscanthus sacchariflorus and M. sinensis. To expand the genetic base of M. × giganteus, the substantial diversity within its progenitor species should be used for cultivar improvement and diversification. Here, we phenotyped a diversity panel of 605 M. sacchariflorus from six previously described genetic groups and 27 M. × giganteus genotypes for dry biomass yield and 16 yield-component traits, in field trials grown over 3 years at one subtropical location (Zhuji, China) and four temperate locations (Foulum, Denmark; Sapporo, Japan; Urbana, Illinois; and Chuncheon, South Korea). There was considerable diversity in yield and yield-component traits among and within genetic groups of M. sacchariflorus, and across the five locations. Biomass yield of M. sacchariflorus ranged from 0.003 to 34.0 Mg ha−1 in year 3. Variation among the genetic groups was typically greater than within, so selection of genetic group should be an important first step for breeding with M. sacchariflorus. The Yangtze 2x genetic group (=ssp. lutarioriparius) of M. sacchariflorus had the tallest and thickest culms at all locations tested. Notably, the Yangtze 2x genetic group's exceptional culm length and yield potential were driven primarily by a large number of nodes (>29 nodes culm−1 average over all locations), which was consistent with the especially late flowering of this group. The S Japan 4x, the N China/Korea/Russia 4x, and the N China 2x genetic groups were also promising genetic resources for biomass yield, culm length, and culm thickness, especially for temperate environments. Culm length was the best indicator of yield potential in M. sacchariflorus. These results will inform breeders' selection of M. sacchariflorus genotypes for population improvement and adaptation to target production environments.  相似文献   

14.
The hybrid origin of Miscanthus purpurascens has previously been proposed, primarily because of its intermediate morphology. In this study, phylogenies based on the DNA sequences from the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS), on the DNA sequences of the trnL intron and trnL-F intergenic spacer of chloroplast DNA, and on amplified fragment length polymorphism (AFLP) fingerprinting confirm that M. purpurascens originated through homoploid hybridization between M. sinensis and M. sacchariflorus. Two different types of ITS sequences were identified from almost all plants of M. purpurascens. One type was found to be closely related to M. sinensis and the other to M. sacchariflorus. Miscanthus purpurascens was found to possess many M. sinensis- and M. sacchariflorus-specific AFLP bands but no band specific to itself. Clustering with the Unweighted Pair Group Method with Arithmetic Mean and principal coordinate analysis based on the AFLP data also demonstrated that M. purpurascens is an approximate intermediate of the two species. In addition, M. purpurascens has the plastid genome of M. sinensis or M. sacchariflorus, suggesting that either species could be its maternal parent. All specimens of M. purpurascens and its coexisting parental species are identified as diploids (2n = 2x = 38). Possible mechanisms of natural hybridization, hybrid status, chloroplast DNA recombination, and evolutionary implications of this hybridization are also discussed.  相似文献   

15.
Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38), as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei’s genetic diversity index (He) of 0.32 and polymorphism information content (PIC) of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83%) was substantially greater than the between-subpopulation variation (17%). Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.  相似文献   

16.
Miscanthus and Saccharum are closely related perennial C4 grasses. Miscanthus has recently attracted interest as a non-food crop for energy and fibre production. However, molecular genetic tools for the selection of new Miscanthus genotypes and study of its genetic resources are limited. We have identified six chloroplast (plastid) marker loci,containing both microsatellites (cpSSRs) and single nucleotide polymorphisms (SNPs) and developed primers to amplify and sequence these regions. The primers were designed using the complete chloroplast genome sequence of sugarcane and were tested on a collection of 164 Miscanthus genotypes and 14 related species of the subfamily Panicoideae. The cpSSR markers were highly polymorphic, with the number of alleles ranging from 10 to 16 per locus. Within the six cpSSR marker loci, the hybrid M. ×giganteus exhibits virtually no cpDNA variation compared with its putative parents M. sinensis and M. sacchariflorus. These SNP markers enable the differentiation of most Miscanthus species and detect infraspecific variation suitable for defining cytoplasmic genepools of Miscanthus for breeding purposes.  相似文献   

17.
Due to the limited number of molecular studies focused on European gene pool investigation, it is necessary to perform plant material recognition. Eighteen accessions of three Miscanthus species, namely, M. × giganteus, M. sinensis, M. sacchariflorus were evaluated with the use of molecular marker systems such as: inter simple sequence repeats (ISSRs), random amplified polymorphic DNA (RAPD), and by estimation of ploidy level based on flow cytometry. As a result, only one ISSR primer (ISSR1) and three RAPD primers (RAPD1, RAPD2, RAPD4) were required to identify all genotypes. Moreover, the use of the above mentioned molecular markers enable the proper species recognition of the interspecific hybrid M. × giganteus “Floridulus,” which has been previously mislabeled as M. floridulus. The highest genetic similarity coefficient (0.94) was observed between M. × giganteus clones, which indicates that the genetic diversity within this species was very low. Whereas M. sinensis genotypes represented a relatively wide diversity with similarity coefficient of 0.58. Cluster analysis using UPGMA grouped the 18 accessions in three clusters according to species affiliation including relabeled M. × giganteus “Floridulus,” which proved to be closely related to M.  × giganteus. Similar groupings were evident in the PCoA analysis.  相似文献   

18.
Miscanthus species, which are C4perennial grasses, have a highbiomass potential but yields at many sites in Europe can belimited by insufficient water supply and plant survival is endangeredunder extreme summer drought. A pot experiment was conductedto measure the influence of reduced water supply on the wateruse efficiency (WUE) and biomass partitioning of three Miscanthusgenotypes (M. x giganteus, M. sacchariflorus, and a M. sinensishybrid) in a controlled environment. The experiment consistedof three phases (phase 1 = 0–20 d; phase 2 = 21–39d; phase 3 = 40–54 d) punctuated by destructive harvests.In phase 1, soil moisture was non-limiting. In the second andthird phases, lowered soil moisture contents induced water deficits.Air vapour pressure deficit (VPD) was 0.49 ± 0.05 kPa.Water deficits caused leaf senescence in M. x giganteus andM. sacchariflorus, but not in the M. sinensis hybrid. Greenleaf conductances were lowest in M. sinensis under water deficit,indicating stomatal regulation. Water use efficiency for wholeplants of each genotype ranged from 11.5 to 14.2 g dry matter(DM) kg-1H2O but did not differ significantly between genotypesor water treatments under the conditions of this experiment.However, differences in dry matter partitioning to the shoot(the harvestable component) resulted in genotypic differencesin WUE, calculated on a harvestable dry matter basis, whichranged from 4.1 g DM kg-1H2O for M. sacchariflorus to 2.2 gDM kg-1H2O for M. x giganteus. Copyright 2000 Annals of BotanyCompany Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus x giganteus, water use efficiency, biomass, C4plants, drought  相似文献   

19.
In Myrtaceae, reports regarding the nuclear DNA content are scarce. The aim of this study is to present genome size data for fleshy-fruited Myrteae, and to test their relation with chromosome number and ploidy, the available data for cytoevolutionary studies in Myrtaceae. Thirty species out of ten genera were investigated for chromosome number and genome size using flow cytometry. Twenty-eight species were diploid with 2n = 2x = 22 and two species were tetraploid with 2n = 4x = 44. All genome sizes measured are new. Among the diploid species, a gradual and small variation in 2C-values (0.486 pg in Gomidesia schaueriana to 0.636 pg in Eugenia multicostata) was observed, whereas the tetraploid genomes of Psidium acutangulum and P. cattleianum had about twice as much DNA (1.053 and 1.167 pg, respectively). The total interspecific variation of C-values was 2.45-fold. The fleshy-fruited Myrteae have smaller holoploid genomes than the capsular-fruited Eucalypteae and Melaleuceae.  相似文献   

20.
Smooth pufferfish of the family Tetraodontidae had become pure genomic models because of the remarkable compaction of their genome. This trait seems to be the result of DNA loss following its divergence from the sister family Diodontidae, which possess larger genomes. In this study, flow cytometry was used for estimate the genome size of four pufferfish species from the Neotropical region. Cytogenetic data and confocal microscopy were also used attempting to confirm relationships between DNA content and cytological parameters. The haploid genome size was 0.71?±?0.03 pg for Sphoeroides greeleyi, 0.34?±?0.01 pg for Sphoeroides spengleri, 0.82?±?0.03 pg for Sphoeroides testudineus (all Tetraodontidae), and 1.00?±?0.03 pg for Chilomycterus spinosus (Diodontidae). These differences are not related with ploidy level, because 46 chromosomes are considered basal for both families. The value for S. spengleri represents the smallest vertebrate genome reported to date. Since erythrocyte cell and nuclear sizes are strongly correlated with genome size, the variation in this last is considered under both adaptive and evolutionary perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号