首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airway surface liquid (ASL) contains substances important in mucociliary clearance and airway defense. Little is known about substance concentrations in ASL because of its small volume and sampling difficulties. We used in vivo microdialysis (IVMD) to sample liquid lining the nasal cavity without net volume removal and incorporated into IVMD a potential difference (PD) electrode to assess airway integrity. The cystic fibrosis (CF) mouse nasal epithelia exhibit ion transport defects identical to those in CF human airways and, thus, are a good model for CF disease. We determined that nasal liquid [Na+] (107 +/- 4 mM normal; 111 +/- 9 mM CF) and [Cl-] (120 +/- 6 mM normal; 122 +/- 4 mM CF) did not differ between genotypes. The nasal liquid [K+] (8.7 +/- 0.4 mM) was significantly less in normal than in CF mice (16.6 +/- 4 mM). IVMD accurately samples nasal liquid for ionic composition. The ionic composition of nasal liquid in the normal and CF mice is similar.  相似文献   

2.
The pathogenesis of cystic fibrosis (CF) airways disease remains controversial. Hypotheses that link mutations in CFTR and defects in ion transport to CF lung disease predict that alterations in airway surface liquid (ASL) isotonic volume, or ion composition, are critically important. ASL [Cl-] is pivotal in discriminating between these hypotheses, but there is no consensus on this value given the difficulty in measuring [Cl-] in the "thin" ASL (approximately 30 microm) in vivo. Consequently, a miniaturized solid-state electrode with a shallow depth of immersion was constructed to measure ASL [Cl-] in vivo. In initial experiments, the electrode measured [Cl-] in physiologic salt solutions, small volume (7.6 microl) test solutions, and in in vitro cell culture models, with > or =93% accuracy. Based on discrepancies in reported values and/or absence of data, ASL Cl- measurements were made in the following airway regions and species. First, ASL [Cl-] was measured in normal human nasal cavity and averaged 117.3 +/- 11.2 mM (n = 6). Second, ASL [Cl-] measured in large airway (tracheobronchial) regions were as follows: rabbit trachea and bronchus = 114.3 +/- 1.8 mM; (n = 6) and 126.9 +/- 1.7 mM; (n = 3), respectively; mouse trachea = 112.8 +/- 4.2 mM (n = 13); and monkey bronchus = 112.3 +/- 10.9 mM (n = 3). Third, Cl- measurements were made in small (1-2 mm) diameter airways of the rabbit (108.3 +/- 7.1 mM, n = 5) and monkey (128.5 +/- 6.8 mM, n = 3). The measured [Cl-], in excess of 100 mM throughout all airway regions tested in multiple species, is consistent with the isotonic volume hypothesis to describe ASL physiology.  相似文献   

3.
Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.  相似文献   

4.
Nitric oxide (NO) plays an important role in a number of physiological processes in the airways, including host defense. Although the exact cellular and molecular source of the NO formation in airways is unknown, there is recent evidence that neuronal NO synthase (NOS1) contributes significantly to NO in the lower airways of cystic fibrosis (CF) patients. NOS1 protein has been shown to be expressed in nasal epithelium, suggesting an involvement of NOS1-derived NO in upper airway biology. We here hypothesized that nasal NO concentrations in CF patients are related to genotype variants in the NOS1 gene. Measurements of nasal NO concentration and pulmonary function were performed in 40 clinically stable CF patients. Genomic DNA from all patients was screened for an intronic AAT-repeat polymorphism in the NOS1 gene using polymerase chain reaction and simple sequence length polymorphism (SSLP) analysis. The allele size at that locus was significantly (P = 0.001) associated with upper airway NO. Mean (+/- SD) nasal NO concentrations were 40.5 +/- 5.2 ppb in CF patients (n = 12) with high repeat numbers (i.e., both alleles > or =12 repeats) and 72.6 +/- 7.4 ppb in patients (n = 28) with low repeat numbers (i.e., at least one allele <12 repeats). Furthermore, in the group of CF patients harboring NOS1 genotypes associated with low nasal NO, colonization of airways with P. aeruginosa was significantly more frequent than in patients with NOS1 genotypes associated high nasal NO concentrations (P = 0.0022). We conclude that (1) the variability in CF nasal NO levels are related to naturally occurring variants in the NOS1 gene, and (2) that nasal NOS1-derived NO affects the susceptibility of CF airways to infection with P. aeruginosa.  相似文献   

5.
This study was designed to test the in vivo efficacy of the chemical chaperone trimethylamine oxide (TMAO) in correcting the Cl- transport defect in a mouse model of cystic fibrosis (CF). Rectal potential difference (RPD) measurements were done in matched wild-type and DeltaF508 CF mice. Mice were treated by subcutaneous injections of TMAO. Wild-type mice demonstrated a forskolin-stimulated, Cl--dependent hyperpolarization of -6.4 +/- 0.8 mV (n = 11), which was significantly increased to -13.1 +/- 1.4 mV after treatment with TMAO. DeltaF508 CF mice showed no significant responses to forskolin. Treatment with TMAO recovered a forskolin-activated RPD in DeltaF508 CF mice (-1.1 +/- 0.2 mV; n = 17) but not in CFTR null mice. The effects of TMAO were dose dependent, resulting in a slope of -0.4 +/- 0.1 mV x g(-1) x kg(-1) in DeltaF508 CF mice. The forskolin-stimulated RPD in TMAO-treated DeltaF508 CF mice was partially blocked by glibenclamide and further stimulated by apigenin. The total response to forskolin plus apigenin was -2.5 +/- 0.45 mV (n = 6 mice), corresponding to 39% of the response evoked by forskolin only in wild-type mice.  相似文献   

6.
The ion transport defects reported for human cystic fibrosis (CF) airways are reproduced in nasal epithelia of the CF mouse. Although this tissue has been studied in vivo using the nasal potential difference technique and as a native tissue mounted in the Ussing chamber, little information is available on cultured murine nasal epithelia. We have developed a polarized cell culture model of primary murine nasal epithelia in which the CF tissue exhibits not only a defect in cAMP-mediated Cl- secretion but also the Na+ hyperabsorption and upregulation of the Ca2+-activated Cl- conductance observed in human airways. Both the wild-type and CF cultures were constituted predominantly of undifferentiated cuboidal columnar cells, with most cultures exhibiting a small number of ciliated cells. Although no goblet cells were observed, RT-PCR demonstrated the expression of Muc5ac RNA after approximately 22 days in culture. The CF tissue exhibited an adherent layer of mucus similar to the mucus plaques reported in the distal airways of human CF patients. Furthermore, we found that treatment of CF preparations with a Na+ channel blocker for 7 days prevented formation of mucus adherent to epithelial surfaces. The cultured murine nasal epithelial preparation should be an excellent model tissue for gene transfer studies and pharmacological studies of Na+ channel blockers and mucolytic agents as well as for further characterization of CF ion transport defects. Culture of nasal epithelia from DeltaF508 mice will be particularly useful in testing drugs that allow DeltaF508 CFTR to traffic to the membrane.  相似文献   

7.
The nasal epithelium of the mouse closely mimics the bioelectrical phenotype of the human airways. Ion transport across the nasal epithelium induces a nasal transepithelial potential difference. Its measurement by a relatively non-invasive method adapted from humans allows in vivo longitudinal measurements of CFTR-dependent ionic transport in the murine nasal mucosa. This test offers a useful tool to assess CFTR function in preclinical studies for novel therapeutics modulating CFTR activity.Here we extensively review work done to assess transepithelial transport in the murine respiratory epithelium in the basal state and after administration of CFTR modulators. Factors of variability and discriminative threshold between the CF and the WT mice for different readouts are discussed.  相似文献   

8.
The effects of esophageal acidification on airway function are unclear. Some have found that the esophageal acidification causes a small increase in airway resistance, but this change is too small to cause significant symptoms. The aims of this study were to investigate the effects of esophageal acidification on multiple measures of airway function in chloralose-anesthetized cats. The esophagus was cannulated and perfused with either 0.1 M PBS or 0.1 N HCl at 1 ml/min as the following parameters were quantified in separate experiments: diameter of bronchi (n = 5), tracheal mucociliary transport rate (n = 4), tracheobronchial mucus secretion (n = 7), and lung function (n = 6). We found that esophageal acidification for 10-30 min decreased bronchial diameters primarily of the smaller low-resistance airways (10-22%, P < 0.05), decreased tracheal mucociliary transport (53%, 8.7 +/- 2.4 vs. 4.1 +/- 1.3 mm/min, P < 0.05), increased tracheobronchial mucus secretion (147%, 3.4 +/- 0.7 vs. 8.4 +/- 2.6 mg/10 min, P < 0.05), and caused no change in total lung resistance or dynamic compliance (P > 0.05). Considering that tracheal mucociliary transport rate is governed in part by mucus secretion, we concluded that the primary airway response to esophageal acidification observed is increased mucus secretion. Airway constriction may act to assist in rapid secretion of mucus and to increase the effectiveness of coughing while not affecting lung resistance or compliance. Given the buffering capabilities of mucus, esophageal acidification activates appropriate physiological responses that may act to neutralize gastroesophageal reflux that reaches the larynx, pharynx, or lower airways.  相似文献   

9.
The exocrine pancreas of the cystic fibrosis (CF) mouse (cftr(m1UNC)) is only mildly affected compared with the human disease, providing a useful model to study alterations in exocrine function. The CF mouse pancreas has approximately 50% of normal amylase levels and approximately 200% normal Muclin levels, the major sulfated glycoprotein of the pancreas. Protein biosynthetic rates and mRNA levels for amylase were not altered in CF compared with normal mice, and increases in Muclin biosynthesis and mRNA paralleled the increased protein content. Stimulated pancreatic amylase secretion in vitro and in vivo tended to be increased in CF mice but was not statistically significant compared with normal mice. We show for the first time that the CF mouse duodenum is abnormally acidic (normal intestinal pH = 6.47 +/- 0.05; CF intestinal pH = 6.15 +/- 0.07) and hypothesize that this may result in increased signaling to the exocrine pancreas. There were significant increases in CF intestinal mRNA levels for secretin (310% of normal, P < 0.001) and vasoactive intestinal peptide (148% of normal, P < 0.05). Furthermore, CF pancreatic cAMP levels were 147% of normal (P < 0.01). These data suggest that the CF pancreas may be chronically stimulated by cAMP-mediated signals, which in turn may exacerbate protein plugging in the acinar/ductal lumen, believed to be the primary cause of destruction of the pancreas in CF.  相似文献   

10.
Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K(+) efflux pathway, which could not be reversed by cAMP nor calcium agonists.  相似文献   

11.
Nasal potential difference (PD) measurements have been used to demonstrate defective CFTR function in cystic fibrosis (CF) and to evaluate potential CF therapies. We used the selective thiazolidinone CFTR inhibitor CFTR(inh)-172 to define the involvement of CFTR in nasal PD changes in mice and pigs. In normal mice infused intranasally with a physiological saline solution containing amiloride, nasal PD was -4.7 +/- 0.7 mV, hyperpolarizing by 15 +/- 1 mV after a low-Cl- solution, and a further 3.9 +/- 0.5 mV after forskolin. CFTR(inh)-172 produced 1.1 +/- 0.9- and 4.3 +/- 0.7-mV depolarizations when added after low Cl- and forskolin, respectively. Systemically administered CFTR(inh)-172 reduced the forskolin-induced hyperpolarization from 4.7 +/- 0.4 to 0.9 +/- 0.1 mV but did not reduce the low Cl(-)-induced hyperpolarization. Nasal PD was -12 +/- 1 mV in CF mice after amiloride, changing by <0.5 mV after low Cl- or forskolin. In pigs, nasal PD was -14 +/- 3 mV after amiloride, hyperpolarizing by 13 +/- 2 mV after low Cl- and a further 9 +/- 1 mV after forskolin. CFTR(inh)-172 and glibenclamide did not affect nasal PD in pigs. Our results suggest that cAMP-dependent nasal PDs in mice primarily involve CFTR-mediated Cl- conductance, whereas cAMP-independent PDs are produced by a different, but CFTR-dependent, Cl- channel. In pigs, CFTR may not be responsible for Cl- channel-dependent nasal PDs. These results have important implications for interpreting nasal PDs in terms of CFTR function in animal models of CFTR activation and inhibition.  相似文献   

12.
Because of its possible importance in cystic fibrosis (CF) pulmonary pathogenesis, the effect of anion and liquid secretion inhibitors on airway mucociliary transport was examined. When excised porcine tracheas were treated with ACh to induce gland liquid secretion, the rate of mucociliary transport was increased nearly threefold from 2.5 +/- 0.5 to 6.8 +/- 0.8 mm/min. Pretreatment with both bumetanide and dimethylamiloride (DMA), to respectively inhibit Cl(-) and HCO secretion, significantly reduced mucociliary transport in the presence of ACh by 92%. Pretreatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid similarly reduced mucociliary transport in ACh-treated airways by 97%. These agents did not, however, reduce ciliary beat frequency. Luminal application of benzamil to block liquid absorption significantly attenuated the inhibitory effects of bumetanide and DMA on mucociliary transport. We conclude that anion and liquid secretion is essential for normal mucociliary transport in glandular airways. Because the CF transmembrane conductance regulator protein likely mediates Cl(-), HCO, and liquid secretion in normal glands, we speculate that impairment of gland liquid secretion significantly contributes to defective mucociliary transport in CF.  相似文献   

13.
Pseudomonas aeruginosa rhamnolipid causes ciliostasis and cell membrane damage to rabbit tissue, is a secretagogue in cats, and inhibits epithelial ion transport in sheep tissue. It could therefore perturb mucociliary clearance. We have investigated the effect of rhamnolipid on mucociliary transport in the anesthetized guinea pig and guinea pig and human respiratory epithelium in vitro. Application of rhamnolipid to the guinea pig tracheal mucosa reduced tracheal mucus velocity (TMV) in vivo in a dose-dependent manner: a 10-microgram bolus caused cessation of TMV without recovery; a 5-micrograms bolus reduced TMV over a period of 2 h by 22.6% (P = 0.037); a 2.5-microgram bolus caused no overall changes in TMV. The ultrastructure of guinea pig tracheal epithelium exposed to 10 micrograms of rhamnolipid in vivo was normal. Application of 1,000 micrograms/ml rhamnolipid had no effect on the ciliary beat frequency (CBF) of guinea pig tracheal rings in vitro after 30 min, but 250 micrograms/ml stopped ciliary beating after 3 h. Treatment with 100 micrograms/ml rhamnolipid caused immediate slowing of the CBF (P less than 0.01) of human nasal brushings (n = 7), which was maintained for 4 h. Mono- and dirhamnolipid had equivalent effects. The CBF of human nasal turbinate organ culture was also slowed by 100 micrograms/ml rhamnolipid, but only after 4 h (CBF test, 9.87 +/- 0.41 Hz; control, 11.48 +/- 0.27 Hz; P less than 0.05, n = 6), and there was subsequent recovery by 14 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na+ channel β-subunit (βENaC-Tg) suggest that raised airway Na+ transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function βENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, βENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na+ transport measured in Ussing chambers (“flooded” conditions) was raised in both Liddle and βENaC-Tg mice. Because enhanced Na+ transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic “thin film” conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na+ absorption were intact in Liddle but defective in βENaC-Tg mice. We conclude that the capacity to regulate Na+ transport and ASL volume, not absolute Na+ transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.  相似文献   

15.
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR?(/)? pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR?(/)? epithelia showed markedly reduced Cl? and HCO?? transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR?(/)? pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl? conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl? and HCO?? in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.  相似文献   

16.
Inflammatory cell populations have not been yet precisely evaluated in cystic fibrosis (CF) airways. We intended to characterize morphological modifications, inflammatory cell infiltration and cell proliferation in nasal tissues obtained from 15 CF patients and from 6 non-CF patients with nasal polyposis. Morphological analysis showed an intense inflammatory infiltration in CF and non-CF tissues with only few modifications in the epithelium from CF tissues. Inflammatory cell populations characterized by specific immunolabeling were quantified, showing a predominance of macrophages and T- and B-lymphocytes and only moderate numbers of neutrophils in CF tissues; in non-CF polyps, lymphocytes and eosinophils were abundant. Proliferating cell percentages quantified after proliferating cell nuclear antigen immunolabeling were 5.3+/-4.1% (mean +/- SD) in CF polyps and 3.1+/-1.2% in non-CF polyps in epithelium but were very low in lamina propria. Intense inflammation in nasal tissues from CF patients is therefore dominated by macrophages and lymphocytes rather than by neutrophils. While morphology is preserved, proliferation is high in epithelium from CF polyps. These findings should be regarded in the future for a better understanding of inflammation in CF airway disease.  相似文献   

17.
Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37 degrees C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 +/- 22 (SE) microm and a transepithelial potential difference (PD) of 1.86 +/- 0.29 mV, lumen negative. Short-circuit current (I(sc)) was 25 +/- 3.5 microA/cm(2), tissue resistance was 96 +/- 14 Omega, and conductance was 15.2 +/- 1.7 mS/cm(2). At baseline, amiloride-sensitive Na transport accounted for 51% of I(sc) (change in I(sc) = 9.7 +/- 2.6 microA/cm(2); n = 8 airways), corresponding to 0.36 microeq. cm(-2). h(-1). Treatment with 0.1 mM bumetanide did not reduce the I(sc) (n = 5 airways). Exposure to 1 microM Ca ionophore A-23187 raised the I(sc) by 9 microA/cm(2) (47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 microM provoked a biphasic response, an initial rapid rise in I(sc) followed by a decline (n = 3 airways). There was no significant increase in PD or I(sc) in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO(3) appears to be present and could be stimulated by raising intracellular Ca.  相似文献   

18.
Skeletal muscle transport of lactate and pyruvate was studied in primary cultures of rat myotubes, applying the pH-sensitive fluorescent indicator 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The initial rate of decrease in intracellular pH (pHi) upon lactate or pyruvate incubation was used to determine total transport (carrier mediated and diffusion). Both lactate and pyruvate transport could be inhibited by a combination of 0.5 mM 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid, 5 mM mersalyl and 10 mM alpha-cyano-4-hydroxycinnamate. The kinetic parameters, Km and Vmax, for carrier-mediated transport of lactate were 9.9+/-1.1 mM and 0. 69+/-0.02 mmol l-1 s-1, respectively. For pyruvate, Km and Vmax were 4.4+/-1.3 mM and 0.30+/-0.05 mmol l-1 s-1, respectively. The diffusion component of the total transport was 0.0040+/-0.0005[S] (n=4) and 0.0048+/-0.0003[S] (n=4) for lactate and pyruvate, respectively. Furthermore, it was observed that the two monocarboxylate transporter isoforms present in mature skeletal muscles, MCT1 and MCT4 (formerly called MCT3 (M.C. Wilson, V.N. Jackson, C. Heddle, N.T. Price, H. Pilegaard, C. Juel, A. Bonen, I. Montgomery, O.F. Hutter, A.P. Halestrap, Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3, J. Biol. Chem. 273 (1998) 15920-15926)), were also expressed in primary culture of myotubes.  相似文献   

19.
We have recently shown that unilateral naris occlusion (UNO) causes an increase in olfactory marker protein (OMP) immunoreactivity (IR) in mouse olfactory sensory neurons (OSN) from the occluded side of the nasal cavity and a decrease in OMP-IR on the non-occluded side, relative to controls. Given OMP's demonstrated role in olfactory modulation, these OMP-IR changes have been interpreted as a compensatory response by OSNs to odor deprivation on the occluded side and to supernormal exposure to odor on the non-occluded side of the nasal cavity. In the current study, we examined the developmental timing and the regional distribution of this process throughout the nasal cavity using immunocytochemistry. Results demonstrate that OMP-IR diverges in OSNs from the occluded side relative to the non-occluded side of the nasal cavity within eleven days after UNO, with statistically significant differences measurable after 17 days (n=16). We also measured relative levels of the Type 4 phosphodiesterase (PDE4A), another potential olfactory modulator, in nasal cavity tissue from UNO (n=8) and untreated mice (n=9) using western blots and immunocytochemistry. Like OMP, PDE4A-IR increased on the occluded side of the nasal cavity after UNO. Finally, we used immunocytochemistry to assess relative levels of olfactory-specific adenylyl cyclase (ACIII, n=4) and G-protein (Golf, n=2) in OSNs from the occluded and non-occluded sides of the nasal cavity of UNO mice. Following UNO, ACIII but not Golf -IR levels diverged comparing the occluded to the non-occluded sides of the nasal cavity. Taken together, our findings provide support for the previously unknown phenomenon of compensatory responses by OSNs to odor environment.  相似文献   

20.
We sought to define the contribution of the climbing fibers (CF), one of the major inputs to Purkinje neurons, to the increase in cerebellar blood flow (BFcrb) produced by activation of the cerebellar cortex. The neurotoxin 3-acetylpyridine was used to lesion the inferior olive, the site from which the CF originate. Crus II, an area of the cerebellar cortex that receives sensory afferents from the perioral region, was activated by low-intensity stimulation of the upper lip (5-25 V and 4-16 Hz) in sham-lesioned and lesioned mice. BFcrb was recorded in crus II using a laser-Doppler flow probe. The increase in BFcrb produced by harmaline, an alkaloid that activates the CF, was abolished in lesioned mice (P > 0.05 vs. BFcrb before harmaline, n = 6), attesting to the effectiveness of the lesion. In sham-lesioned animals, upper lip stimulation increased BFcrb in crus II by 25 +/- 2% (25 V and 10 Hz, n = 6). The rise in BFcrb was attenuated by 63 +/- 7% (25 V and 10 Hz) in lesioned mice (P < 0.05, n = 6). In contrast, the increase in BFcrb produced by hypercapnia was not affected (P > 0.05). These data suggest that CF are responsible for a substantial portion of the increase in BFcrb produced by crus II activation. Thus the hemodynamic response evoked by functional activation of the cerebellar cortex reflects, in large part, CF activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号