首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

2.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

3.
Modulation of lambda integrase synthesis by rare arginine tRNA   总被引:6,自引:1,他引:5  
Lambda's int gene contains an anomalously high frequency of the rare arginine codons AGA and AGG when compared to genes of Escherichia coli or to the rest of phage lambda. These are the least frequent codons in genes of E. coli and are recognized by the rarest tRNAs. The presence of these codons reduces the translation rate and, depending on the context, this can strongly modulate translational efficiency by a variety of mechanisms. In this study, we show that expression of the natural int gene may also be modulated by rare arginine codon usage, and we explore this mechanism.  相似文献   

4.
Codon contexts in enterobacterial and coliphage genes   总被引:6,自引:0,他引:6  
This investigation of the codon context of enterobacteria, plasmid, and phage protein genes was based on a search for correlations between the presence of one base type at codon position III and the presence of another base type at some other position in adjacent codons. Enterobacterial genes were compared with eukaryotic sequences for codon context effects. In enterobacterial genes, base usage at codon position III is correlated with the third position of the upstream adjacent codon and with all three positions of the downstream codon. Plasmid genes are free of context biases. Phage genes are heterogeneous: MS2 codons have no biased context, whereas lambda genes partly follow the trends of the host bacterium, and T7 genes have biased codon contexts that differ from those of the host. It has been reported that two successive third-codon positions tend to be occupied by two purines or two pyrimidines in Escherichia coli genes of low expression level. Here, the extent to which highly expressed protein genes can modulate base usage at two successive codon positions III, given the constraints on codon usage and protein sequence that act on them, was quantified. This demonstrates that the above-mentioned favored patterns are not a characteristic of weakly expressed genes but occur in all genes in which codon context can vary appreciably. The correlation between successive third-codon positions is a distinct feature of enterobacteria and of some phages, one that may result from adaptation of gene structure to translational efficiency. Conversely, codon context in yeast and human genes is biased--but for reasons unrelated to translation.   相似文献   

5.
Codon optimizer: a freeware tool for codon optimization   总被引:2,自引:0,他引:2  
Selection plays a major role in the determination of codon usage in all organisms studied so far. In highly expressed genes, a narrow set of codons is used and these codons correspond to the more abundant tRNA species. This minimizes the risk of tRNA depletion during translation. In fact, the codons in a gene may be true bottlenecks, especially in cases where foreign genes are expressed in a host in which the usage of codons in highly expressed genes does not resemble the usage of codons in the species from which the foreign gene originates. In such cases, it has been shown that substitution of rare codons in the introduced gene may increase the yield dramatically. In addition, replacement of rare codons might decrease the chance of misincorporation and protect the protein from premature turnover. Here, a piece of software is announced that calculates a codon-optimized sequence of any gene based on knowledge of highly expressed genes of a host. In addition, it calculates the codon adaptation index of the gene and identifies internal type II restriction sites of the optimized sequence. The program runs under Windows and is available as freeware for use in academia.  相似文献   

6.
鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。  相似文献   

7.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

8.
The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.  相似文献   

9.
10.
11.
Synonymous codons encode the same amino acid, but differ in other biophysical properties. The evolutionary selection of codons whose properties are optimal for a cell generates the phenomenon of codon bias. Although recent studies have shown strong effects of codon usage changes on protein expression levels and cellular physiology, no translational control mechanism is known that links codon usage to protein expression levels. Here, we demonstrate a novel translational control mechanism that responds to the speed of ribosome movement immediately after the start codon. High initiation rates are only possible if start codons are liberated sufficiently fast, thus accounting for the observation that fast codons are overrepresented in highly expressed proteins. In contrast, slow codons lead to slow liberation of the start codon by initiating ribosomes, thereby interfering with efficient translation initiation. Codon usage thus evolved as a means to optimise translation on individual mRNAs, as well as global optimisation of ribosome availability.  相似文献   

12.
13.
Several studies have shown that codon usage within genes varies, as it seems dependent on both codon context and codon position within the gene. Given that palindromes in addition often are avoided in genomes, this study aimed at finding out if intragenic variations in codon usage may be a way to control the amount and location of palindromes. A Monte Carlo algorithm was written which resampled the codons in genes while keeping the amino acid sequence of the translation product constant. On the resampled sequences, palindromes were counted and their intragenic positions mapped. Escherichia coli K12 uses type II restriction-modification systems and displays pronounced codon usage phenomena. Using this as a reference organism it was clearly shown that the number of palindromes in genes is generally lower than the amount of palindromes in resampled genes; thus, the succession of codons seems to be a way to decrease the number of palindromes. The intragenic position of palindromes in resampled sequences, however, was largely equal to the position in the native genes, so codon usage phenomena are unlikely to be a way to control the intragenic position of palindromes. The analysis was repeated on two bacteriophages and gave similar same results, even though the virus genomes are much smaller. Studies on the endosymbionts Buchnera sp. APS and Wigglesworthia sp., which seemingly have no type II restriction-modification systems, showed that in these species there is only weak evidence for codon usage acting to control the number of palindromes.  相似文献   

14.
Translation of the open reading frame 2 (ORF-2) of the human respiratory syncytial virus M2 gene initiates at one of the three initiation codons located upstream of the termination codon for the first ORF. Replacement of ORF-2 with the major ORF of the chloramphenicol acetyltransferase reporter gene followed by systematic mutagenesis of the putative initiation codons demonstrated the usage of these codons as the translational initiators for ORF-2 expression both in vitro and in vivo. While the efficiency of translation was maintained when only the first and second AUG codons were preserved in vivo, there was no apparent preference in vitro for any of the three codons when only one was present. Mutagenesis studies showed that the location of the termination codon of ORF-1 protein plays a crucial role in directing translation of ORF-2 from the upstream initiation codons in vivo. This indicates that the second ORF is accessed by the ribosomes that are departing from the first ORF and that these ribosomes reinitiate on AUG codons 5' to the point of translation termination.  相似文献   

15.
Expression of foreign proteins in chloroplasts has become an important field of plant genetic engineering. Optimized codon usage is generally thought to increase translational efficiency, but high speed translation of codon bias-adjusted mRNAs can also result in protein misfolding due to a lack of rare codons. In order to analyze the effect of rare codons on a native chloroplast protein in vivo, we modified the D1 subunit of photosystem II by fusing small peptides with different codons into a loop region which tolerates insertions without loss of function. Because of its high-turnover properties, the D1 protein represents an excellent test object to investigate the impact of rare codons on its translation. We choose codons for amino acids Arg, Leu, Ser, Ala and Gly which are rarely used and compared translation of the modified D1 proteins with the respective mutant proteins containing insertions with frequently used codons. Our data indicate that only rare Arg codons drastically affect synthesis of the D1 protein and cluster of rare Ser-codon can induce strategic ribosomal pausing sites.  相似文献   

16.
Liu Q 《Bio Systems》2006,85(2):99-106
The main factors shaping codon usage bias in the Deinococcus radiodurans genome were reported. Correspondence analysis (COA) was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with gene expression level assessed by the "Codon Adaptation Index" (CAI) values, a result that was confirmed by the distribution of genes along the first axis. The results of correlation analysis, variance analysis and neutrality plot indicated that gene nucleotide composition was clearly contributed to codon bias. CDS length was also key factor in dictating codon usage variation. A general tendency of more biased codon usage of genes with longer CDS length to higher expression level was found. Further, the hydrophobicity of each protein also played a role in shaping codon usage in this organism, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity values (r=-0.100, P<0.01). In summary, gene expression level played a crucial role, nucleotide mutational bias, CDS length and the hydrophobicity of each protein just in a minor way in shaping the codon usage pattern of D. radiodurans. Notably, 19 codons firstly defined as "optimal codons" may provide useful clues for molecular genetic engineering and evolutionary studying.  相似文献   

17.
基因表达水平与同义密码子使用关系的初步研究   总被引:3,自引:0,他引:3  
提出一个预测基因表达水平和同义密码子使用的自洽信息聚类方法。将同义密码子分成最适密码子、非最适密码子和稀有密码子,认为三者的使用频率是调控基因表达水平的主要因素。基于这一观点,对Ecoli和Yeast两类生物的基因表达水平和密码子的使用,用自洽信息聚类方法进行了预测。发现高低表达基因明显分开,基因表达水平被分为四级;甚高表达基因(VH)、高表达基因(H)、较低表达基因(LM)和低表达基因(LL);  相似文献   

18.
Synonymous codons are not used with equal frequencies in most genomes. Codon usage has been proposed to play a role in regulating translation kinetics and co‐translational protein folding. The relationship between codon usage and protein structures and the in vivo role of codon usage in eukaryotic protein folding is not clear. Here, we show that there is a strong codon usage bias in the filamentous fungus Neurospora. Importantly, we found genome‐wide correlations between codon choices and predicted protein secondary structures: Nonoptimal codons are preferentially used in intrinsically disordered regions, and more optimal codons are used in structured domains. The functional importance of such correlations in vivo was confirmed by structure‐based codon manipulation of codons in the Neurospora circadian clock gene frequency (frq). The codon optimization of the predicted disordered, but not well‐structured regions of FRQ impairs clock function and altered FRQ structures. Furthermore, the correlations between codon usage and protein disorder tendency are conserved in other eukaryotes. Together, these results suggest that codon choices and protein structures co‐evolve to ensure proper protein folding in eukaryotic organisms.  相似文献   

19.
20.
Mukhopadhyay P  Basak S  Ghosh TC 《Gene》2007,400(1-2):71-81
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号