首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to study the cellular distribution of larval and adult hemoglobins during larval development ofPleurodeles waltlii a double specific immunofluorescent labelling technique was developed.Rabbit antibodies specific for larval and adult hemoglobin components were prepared and conjugated with tetramethyl-rhodamine isothiocyanate for the anti-larval antibodies and fluorescein isothiocyanate for the anti-adult hemoglobin antibodies.Both simultaneous and sequential staining with the two types of fluorescent antibodies indicated that larval and adult hemoglobins were never observed within the same erythrocyte during development. The results provide evidence that two distinct cell populations exist, one synthesizing exclusively larval hemoglobins which is progressively replaced by the other one synthesizing exclusively adult hemoglobins. It remains to be determined if these two populations arise from two distinct types of stem cells (adult and larval) or from the same stem cell type.  相似文献   

2.
Summary Electrophoretic separation of hemoglobins of normalXenopus laevis and of isogenic animals derived from female hybrids ofXenopus laevis×Xenopus gilli revealed 5–9 components in premetamorphic larvae, and 3–4 components in adult toads. InXenopus laevis the number of larval hemoglobin components showed considerable variation, but this variation was absent in isogenic tadpoles, suggesting a genetic basis for hemoglobin polymorphism in larvae.Electrophoretic separation of larval and adult hemoglobins at different concentrations of acrylamide and treatment of these solutions with mercaptoethanol revealed that larval hemoglobin components are charge isomers, whereas adult hemoglobin was found to contain a minor dimeric component.Estimation of hemoglobin components showed that the main increase in adult hemoglobin, i.e from 30–90% of total hemoglobin, occurs within 4 weeks after completion of metamorphosis. By incroporation of3H amino acids in vivo a switch to preferential synthesis of adult hemoglobin and a corresponding decrease in larval hemoglobin production could be demonstrated during early climax stages. This suggests that thyroid hormones are involved in the hemoglobin transition. Yet chemical inhibition of the larval thyroid by thiourea resulted in a delayed but complete hemoglobin transition without morphological transformation. It is concluded that hemoglobin transition and morphological transformation of theXenopus tadpole require different concentrations of thyroid hormones.Abbreviations Hb hemoglobin - HbA adult hemoglobin - HbL larval hemoglobin  相似文献   

3.
Summary Antisera against larval and adultXenopus hemoglobins as well as adult human hemoglobin showed no cross-reaction when tested by immunodiffusion against each heterologous antigen. In this test hemoglobin of a single animal produced two precipitation lines for larvae, but only one for adult stages. Immunoelectrophoresis also revealed more complex precipitation patterns for larval than for adult hemoglobins. Hemoglobin of the isogenic hybrid cloneXenopus laevis/X. gilli also reacted with antisera against normalXenopus hemoglobin.Quantitation of hemoglobins, analyzed by radial immunodiffusion showed fewer than 1% of adult hemoglobin in red cells of larvae, but 30% at completion of metamorphosis. Two weeks later adult hemoglobin attained over 90%, and in red cells of adultXenopus an average of 1% larval hemoglobin were detected.The relatively short transition period suggests that the loss of larval hemoglobin may be due to the elimination of larval red cells, and that the increase in adult hemoglobin may be indicative of a new cell line.  相似文献   

4.
Rabbit antibodies specific for the major tadpole and frog hemoglobin components of R. catesbeiana were used for the detection of the two hemoglobins inside single cells. The antisera, after fractionation by ammonium sulfate precipitation and diethylaminoethyl (DEAE)-cellulose chromatography, were conjugated with fluorescein isothiocyanate for the antifrog hemoglobin serum and tetramethylrhodamine isothiocyanate for the antitadpole hemoglobin serum. The conjugated fractions, refractionated by stepwise elution from a DEAE-cellulose column, were used for the fluorescent staining of blood smears, liver tissue imprints, and smears of liver cell suspensions. Both simultaneous and sequential staining with the two fluorescent preparations indicated that larval and adult hemoglobins were not present within the same erythrocyte during metamorphosis. In other experiments, erythroid cells from animals in metamorphosis were spread on agar containing specific antiserum. Precipitates were formed around the cells which contain the particular hemoglobin. The percentages of cells containing either tadpole or frog hemoglobin were estimated within the experimental error of the method. The data showed that the two hemoglobins are in different cells. It is concluded that the hemoglobin change observed during the metamorphosis of R. catesbeiana is due to the appearance of a new population of erythroid cells containing exclusively frog hemoglobin.  相似文献   

5.
The transition of hemoglobins during metamorphosis of Xenopus laevis involves replacement of the larval erythrocytes by adult ones, suggesting that the developmental control of this event depends upon the growth characteristics of the precursor cells. To identify the erythroid precursor cells and to investigate their developmental fate, we analyzed the distribution of stage-specific globin mRNAs by northern blotting in dorsal and ventral fragments of stage 32 embryos after in vitro culture as well as presumptive erythropoietic tissues of tadpoles during metamorphosis. The histological analysis shows that erythrocytes differentiate only in ventral fragments, suggesting that the ventral blood islands and most likely also the dorsolateral mesoderm are the primary sites of erythropoiesis. We also demonstrate that the first generations of erythrocytes, already express the predominating larval-specific alpha-globin mRNAs. The globin mRNA patterns obtained from presumptive erythropoietic tissues suggest an important role of circulating precursor cells in larval erythropoiesis, whereas the liver appears to be the main site of formation and maturation of the adult erythrocytes. Tentatively we propose that anuran erythropoiesis is dependent upon a self-perpetuating stem-cell line and that the larval and the adult erythrocytes are derived from successive generations of erythroid precursors, whose commitment may be imposed by the erythropoietic sites.  相似文献   

6.
Both cellular and molecular mechanisms regulate the expression of globin genes during development and differentiation.When a change occurs in the type of hemoglobin synthesized, it may be the result of a substitution of erythroid stem cell lineages or may arise through a modulation of globin gene expression after cells become committed to erythroid differentiation. We have investigated the relationship between the early to late embryonic hemoglobin switch and the primary to definitive erythrocyte change in chick embryos. Using double-label fluorescent antibody technique, we find the simultaneous presence of early and late hemoglobins in single erythrocytes of the definitive cell type. Synthesis of early embryonic hemoglobin is not restricted to the primary cell lineage. This evidence is most compatible with the hypothesis that erythroid cells become committed to the synthesis of specific globins after they have become committed to hemoglobin synthesis in general.  相似文献   

7.
We have examined the effects of phenylhydrazine-induced anemia on the in vivo synthesis of specific hemoglobins at larval, metamorphic, and post-metamorphic stages of the bullfrog Rana catesbeiana, and have found that at all stages the animals qualitatively and quantitatively regenerate their pre-anemia hemoglobin profiles, with one exception: Animals approaching or undergoing the metamorphic hemoglobin switch synthesize only adult hemoglobin during recovery from anemia. We conclude that the ontogenetic progression of hemoglobins in R. catesbeiana is regulated at the level of differentiation of distinct erythroid cell lines, each committed to expressing a particular hemoglobin phenotype; this regulation is unperturbed by anemia.  相似文献   

8.
When fetal calf liver erythroid cells were incubated in the presence of small amounts of progesterone (10(-7)-10(-8) M), the hemoglobin synthesis in these cells was significantly increased. The increase in the amount of radioactivity in de novo synthesized hemoglobins could be demonstrated when techniques such as isoelectric focusing, chromatography on DEAE-cellulose and gel chromatography on Sephadex G-100 were used to isolate the hemoglobin fraction. Using the latter technique, it was shown that the synthesis of cytoplasmic non-hemoglobin proteins in erythroid-cell lysates was also stimulated by progesterone. The presence of hepatocytes in culture nullified the hormone action. It was necessary that progesterone was present during the first hours of culture. Delayed addition of the steroid to the cells had no effect on hemoglobin synthesis. Erythropoietin was necessary to obtain stimulation by progesterone. These results suggest that the target cell of the hormone is an erythropoietin-sensitive cell. High concentrations of progesterone (10(-4) M) strongly inhibited hemoglobin synthesis in fetal calf erythroid cells. Culture of cells under this condition, however, gives rise to a cell population that preferentially synthesizes adult hemoglobin. Our results suggest that in the erythropoietic calf liver, high concentrations of progesterone may preferentially stimulate adult hemoglobin synthesis, or that those cells which have a high capacity to synthesize adult hemoglobins are less sensitive to toxic concentrations of the hormone. The effects of stimulation of hemoglobin synthesis in fetal calf erythroid cells occur at hormone concentrations that suggest a possible physiological role of progesterone in fetal, and eventually also in maternal, erythropoiesis.  相似文献   

9.
Previously, we found that the conversion of hemoglobins (Hbs) from the larval to the adult type occurred within a single erythroid cell population in a salamander, Hynobius retardatus ("Hb switching" model), whereas the transition involves replacement of red-blood-cell (RBC) populations ("RBC replacement" model) in many amphibians (M. Yamaguchi, H. Takahashi, and M. Wakahara, 2000, Dev. Gene Evol. 210, 180-189). To further characterize the Hb transition, developmental changes in the erythropoietic sites have been intensively analyzed using larval- and adult-specific globin antibodies and globin and GATA-3 RNA probes. Cells of the ventral blood island (VBI) and the dorsolateral plate (DLP) in embryos differentiate in situ to erythroid cells that contain larval globin mRNA, suggesting that both the VBI and the DLP contribute to "primitive" erythropoiesis. In contrast, the expression pattern of the GATA-3 gene suggests that cells of the DLP may contribute to "definitive" hematopoiesis. In order to determine whether it is possible to define a definitive erythropoiesis in H. retardatus or not, further experiments were done: (1) when metamorphosing larvae were treated with phenylhydrazine to induce anemia and then bled at the postmetamorphic stage after recovery from the anemia, a precocious Hb transition was observed in these animals; (2) an RBC population expressing only adult Hb was confirmed by subtracting the number of RBCs expressing larval Hb from the total number of RBCs during metamorphosis. All these results support the existence of a definitive erythroid cell population that contributes only adult RBCs in this species.  相似文献   

10.
Transition of hemoglobin (Hb) from larval to adult types during the metamorphosis in a salamander Hynobius retardatus has been reported to occur almost independently of thyroid activity, in contrast to the case with many amphibians. In order to obtain further information on the mechanism of the transition in H. retardatus, larval and adult globin cDNAs were cloned, and the globin gene expression was analyzed in normally developing and metamorphosis-arrested animals. Northern hybridization and RT-PCR revealed that larval globin genes were initially expressed 5 days before hatching, and unexpectedly remained expressed even in juveniles 2 years old. The adult globin gene was expressed 19 days after hatching, much earlier than the initiation of morphological metamorphosis. Furthermore, the pattern of globin gene expression in metamorphosis-arrested larvae was almost identical to that in normal controls, suggesting that the transition occurs independently of thyroid hormones. In larvae recovering from anemia, precocious Hb transition, which occurs in Xenopus laevis and Rana catesbeiana, did not occur in H. retardatus. In situ hybridization convincingly demonstrated that the erythropoietic sites are the ventral blood island and the dorsolateral plate at the prehatching stage. During the ontogeny they changed to the liver, kidney, and spleen and were finally restricted to the spleen. Single erythroid cells expressed concurrently larval and adult globin genes, as demonstrated by double in situ hybridization. Thus the transition occurred within a single erythroid cell population, a unique characteristic of H. retardatus. Received: 5 August 1999 / Accepted: 14 October 1999  相似文献   

11.
Summary The viviparous seaperch,Embiotoca lateralis, has unique fetal and adult hemoglobins. Stripped fetal hemoglobin has a higher oxygen affinity than stripped adult hemoglobin at pH 6.5–7.1. The oxygen affinities of both adult and fetal hemoglobins are lowered allosterically by ATP at pH 7.1. Both fetal and adult seaperch erythrocytes include approximately 82% ATP and 18% GTP of the total nucleotide triphosphates (NTP) with a trace of AMP. No 2,3-diphosphoglycerate or inositol polyphosphate was detected. Mid- and late-gestation erythrocytes contain less NTP/mole hemoglobin tetramer than do adult cells. The effective NTP concentration in adult cells is higher than that of the fetal erythrocytes even when the intracellular concentration of Mg2+, which complexes with NTP, is accounted for. The difference in adult and fetal intraerythrocytic NTP concentration should enhance transfer of oxygen from maternal to fetal blood. Thus, the teleostEmbiotoca lateralis may employ a dual mechanism in maternal-fetal oxygen transfer. A difference in fetal and maternal hemoglobin structure and oxygen affinities is enhanced by a difference in their respective intraerythrocytic organic phosphate concentrations.  相似文献   

12.
Antibodies prepared against the two hemoglobins of the adult chick cross react with the two minor hemoglobins and do not react with the two major hemoglobins isolated from lysates of primitive erythroid cells of the 4-day-old embryo. The different immunological reactivities of the two primitive hemoglobin pairs have permitted us to discriminate, in smears of primitive erythroid cells, two populations on the basis of their hemoglobin contents.  相似文献   

13.
Erythropoietin (EP) controls the terminal phase of differentiation in which proerythroblasts and their precursors, the colony forming units-erythroid (CFU-e), develop into erythrocytes. Biochemical studies of this hormone-directed terminal differentiation have been hindered by the lack of a homogeneous population of erythroid cells at the developmental stages of CFU-e and proerythroblasts that will synchronously differentiate in response to EP. Such a population of cells can be prepared from the spleens of mice with the acute erythroblastosis resulting from infection with anemia-inducing Friend virus (FVA). Using these FVA-infected erythroid cells, which were induced to differentiate with EP, four proteins other than hemoglobin that have key functions in mature erythrocytes were monitored during the 48-hour period of terminal differentiation. Synthesis of spectrin and membrane band 3 proteins were determined by immunoprecipitation and SDS-polyacrylamide gel electrophoresis; accumulation of the cytoskeletal protein band 4.1 was monitored by immunoblotting; carbonic anhydrase activity was measured electrometrically. Band 3 synthesis and band 4.1 accumulation could be detected only after exposure of the cells to EP. Spectrin synthesis was ongoing prior to culture with EP, but it did increase after exposure to the hormone. Carbonic anhydrase-specific activity changed very little throughout the terminal differentiation process. These results reveal at least three patterns of production of principal erythrocyte proteins during EP-mediated terminal differentiation of FVA-infected erythroid cells. Depending on the specific protein examined, de novo synthesis can be induced by EP, an ongoing production can be enhanced by EP, or the production of a protein can be completed at a developmental stage prior to EP-mediated differentiation in these cells.  相似文献   

14.
Erythropoiesis in the developing chick embryo   总被引:2,自引:0,他引:2  
The types of erythroid cells of chick embryos developing in ovo have been correlated with the hemoglobins of the embryos. Prior to 5 days, when primitive cells constitute the only erythroid cells, two hemoglobins can be resolved by polyacrylamide gel electrophoresis. The two adult hemoglobins and a minor hemoglobin found only in embryos and young chicks first appear simultaneously with initiation of definitive erythropoiesis.  相似文献   

15.
The separation of cells with different ages from erythrocyte populations of adult rats and young or adult chickens have been achieved by counter-current distribution (CCD). A thin-layer CCD apparatus has been employed. Erythrocytes from blood samples taken at different times after 59Fe i.p. injection were separated by CCD. By compilation in a "composite curve" of the hemoglobin and radioactivity CCD profiles obtained for each erythrocyte population, the distribution of cells according to age can be inferred. Young erythrocytes of rats are located at the right part of the CCD curves, while older cells are distributed towards the left. An opposite distribution has been found for erythrocytes from adult or young chickens. As a first attempt for the application of the CCD procedure to the assay of enzyme activities, it was found a decrease in phytase activity as the age of chicken erythrocytes increases and an increase in phosphoglycerate kinase and phosphofructokinase as the age of rat erythrocytes increases.  相似文献   

16.
ERYTHROPOIETIC CELL CULTURES FROM CHICK EMBRYOS   总被引:3,自引:0,他引:3       下载免费PDF全文
Erythropoietic cell cultures from very early chick blastoderms survive for several days They show four to seven doublings of the erythroid cells and the appropriate morphological changes from proerythroblasts to mature erythrocytes Cell cycle times are the same as in ovo for the first day of culture, but slow down thereafter The hemoglobins of both the primitive and the definitive red cell series are produced. 5-Bromodeoxyuridine added to the cultures inhibits differentiation and hemoglobin synthesis, though not cell division, but quite soon the cells cease being sensitive The effect of the drug can be reversed by the addition of thymidine.  相似文献   

17.
Using light microscopy the morphology, the mitotic index and levels of erythroid cell types were detected from 48 h pike Esox lucius embryos before hatching to adult specimens. At the same developmental stages, the haemoglobins and globin chains expressed were electrophoretically characterized. The erythroid cells of the primitive generation were the most abundant from 48 h before hatching until 15–20 days after hatching, then their number decreased and only rare cells remained in the 3 month‐old juvenile specimens. These cells divided and differentiated in the blood and were substituted by the definitive erythrocyte series. As in other vertebrates, the immature cells of the two generations differed in morphological properties and in the synthetized haemoglobin. The circulating erythroid cells of the definitive population cell lineage were, at all differentiation stages, smaller than those of the primitive generation. The definitive erythrocytes appeared in blood smears of 7 days post‐hatching larvae, they increased rapidly and at 20 days they represented the predominant red blood cell population in the circulation of young pike. Electrophoretic analysis of haemolysates obtained from different developmental stages indicated the presence of distinct embryonic, larval and adult haemoglobins. The embryonic haemoglobins differed from those of the older larva and juvenile specimens and were detectable within the first week of post‐hatching development when only primitive erythrocytes were present in the blood.  相似文献   

18.
Electronic size distributions of erythroid cells from fetal C57BL-6J mice during the eleventh through twentieth days of gestation indicate that the erythropoietic cell populations are constantly changing. The mean volume of the liver derived non-nucleated erythroid population decreases from four times the mean adult erythrocyte volume on the thirteenth gestation day to twice the adult erythrocyte volume at birth. The mean volume of the nucleated erythroid cell is about ten times the mean adult erythrocyte volume. The gestation age of an embryo can be determined from blood cell size distributions. The mode of the non-nucleated population and the percentage of each population indicates the gestation age. Size distribution of cells in density gradient fractions apparently indicate two size populations of non-nucleated cells between the thirteenth and fifteenth days. The density of the non-nucleated cells increases during gestation. It is suggested that the decrease in size and increase in density of non-nucleated cells is due to the release of successively smaller reticulocytes from the liver.  相似文献   

19.
Rabbit antibodies were prepared against the major hemoglobin components of the larval and adult stages of R. catesbeiana. The properties of the antisera were studied by double immunodiffusion, precipitation, and complement fixation. The antisera to tadpole and frog hemoglobins did not cross-react with either hemoglobin or apohemoglobin. The anti-serum against frog hemoglobin was used for the detection of frog hemoglobin in tadpoles undergoing either natural or thyroxine-induced metamorphosis. It was shown that frog hemoglobin is detectable first in the liver, indicating that the liver is the site of erythrocyte maturation during metamorphosis.  相似文献   

20.
Chemical identifications of various hemoglobin types were performed on unfractionated erythroid cells derived from chicken embryos at 5 and 7 days of development and on purified primitive and definitive cells. Proteins were pulse-labelled in primitive erythroid cells at various times of culture to identify those actually synthesized. The data show that primitive cells contain and synthesize only embryonic hemoglobins at all stages of maturation and definitive cells contain adult and minor embryonic hemoglobins, but no major embryonic hemoglobins, not even in trace amounts. These results support a model for hemoglobin switch in the chicken embryo based on cell line substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号