首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This research highlights the possibility of employing a fermentation industry waste (Corynebacterium glutamicum) for the removal of nickel(II) ions from aqueous solution. Furthermore, it necessitates the importance of detailed examinations on the possible differences in the biosorption performance, even for the same biomass, but from different origins. Two types of C. glutamicum, obtained from different industrial sources, were used in this study. With respect to nickel speciation and biosorption performance, pH 6 was identified as an optimal condition. Of the two types of C. glutamicum used, the biomass with excess negatively charged groups performed well in the binding of Ni2+ ions. To enhance the feasibility of using the biomass in column mode, as well as its reuse for multiple cycles, C. glutamicum was immobilized in a polysulfone matrix. Both the free and immobilized biomasses performed relatively well, with maximum experimental uptakes of 111.4 and 102.4 mg g−1, respectively. An up-flow packed column loaded with immobilized biomass was employed for the removal of Ni2+ ions. The column performed well in the biosorption of nickel(II), and exhibited a delayed and favorable breakthrough curve, with Ni2+ uptake and percentage removal of 48.1 mg g−1 biomass and 60.4%, respectively.  相似文献   

3.
The presence of Cs and Sr in culture medium of Azolla filiculoides caused about 27.4% and 46.3% inhibition of biomass growth, respectively, in comparison to A. filiculoides control weight which had not metals. Biosorption batch experiments were conducted to determine the Cs and Sr binding ability of native biomass and chemically modified biosorbents derived from Azolla namely ferrocyanide Azolla sorbents type 1 and type 2 (FAS1 and FAS2) and hydrogen peroxide Azolla sorbent (HAS). The best Cs and Sr removal results were obtained when A. filiculoides was treated by 2 M MgCl2 and 30 ml H2O2 8 mM at pH 7 for 12 h and it was then washed by NaOH solution at pH 10.5 for 6 h. Pretreatment of Azolla have been suggested to modify the surface characteristics which could improve biosorption process. The binding of Cs and Sr on the cell wall of Azolla was studied with micro-PIXE and FT-IR.  相似文献   

4.
《Process Biochemistry》2007,42(11):1546-1552
Heavy metals are toxic pollutants released into the environment as a result of industrial, mining and agricultural activities. The biosorption of Pb, Cu, Cd, and Ni from single and binary metal systems were studied in equilibrium systems and in a flow-through column packed with a calcium-saturated anaerobic sludge biosorbent, respectively. The single-metal sorption uptake capacity of the biomass for Pb was slightly inhibited by the presence of Cu and Cd cations (by 6%) and by the presence of nickel (by 11%). The affinity order of anaerobic biomass for the four metals was established as: Pb > Cu > Ni > Cd. Factors such as hydration effects, hydrolysis effects and covalent binding of the metal ions may contribute to this result. By studying the breakthrough curves obtained from a fixed bed column fed with an equimolar mixture of Pb, Cd, Cu, and Ni, it was determined that lead was the last metal to break through the column at the 150 bed volume mark compared to 4, 15, 30 bed volume marks for Ni, Cd, and Cu, respectively.  相似文献   

5.
《Process Biochemistry》2007,42(4):547-553
The removal of Zn(II) ions from aqueous solution using pure and chemically pretreated biomass of Moringa oleifera was investigated at 30 ± 1 °C in this study. The experimental results explored that the maximum pH (pHmax) for efficient sorption of Zn(II) was 7 ± 0.1 at which evaluated biosorbent dosage and biosorbent particle size, were 0.5 g/L, <0.255 mm, respectively. The cellular Zn(II) concentration increased with the concentrations of Zn(II) in solution. Pretreatment of M. oleifera biomass affected the sorption process and the uptake capacity (mg/g) of biomass for Zn(II) uptake was in following order: NaOH (45.76) > H2SO4 (45.00) > CTAB (42.80) > Ca(OH)2 (42.60) > Triton X-100 (42.06) > H3PO4 (41.22) > Al(OH)3 (41.06) > SDS (40.41) > HCl (37.00) > non-treated biomass (36.07). There was significant increase in uptake capacity of M. oleifera biomass, which suggested that affinity between metal and sorbent can be increased after some sort of pretreatment. Both Langmuir and Freundlich isotherm model fitted well to data of Zn(II) biosorption as represented by high value of their correlation coefficient (i.e. R2  1). Kinetic studies revealed that Zn(II) uptake was fast with 90% or more of uptake occurring with in 40 min of contact time and the equilibrium was reached in 50 min of contact time. The sorption rates were better described by a second order expression than by a more commonly applied Lagergren equation. Finally it was concluded that pretreatment of M. oleifera biomass can achieve superior Zn(II) uptake capacity in comparison to non-pretreated biomass.  相似文献   

6.
In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudo-first order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g?1 and 1450 mg g?1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.  相似文献   

7.
This paper reports on removal and recovery of copper(II) ions from aqueous solutions under batch experimental conditions using NaOH-pretreated powdered leaves of Marrubium globosum ssp. globosum plant. Experimental results showed that pH was optimized at the value of 5.5 by 16.23 mg/g. The increasing metal concentration and temperature caused an increase in biosorption capacity and the process reached its equilibrium in 60 min. The result obtained from kinetic and isotherm studies resulted in better agreement with pseudo second-order kinetic and Langmuir isotherm models. Thermodynamic parameters revealed that the Cu2+ biosorption by the biomass was an endothermic process. The higher desorption efficiency above 90% was obtained in case of using Na2EDTA, K4O7P2, HNO3, HCl, and (NH4)2C2O4 · H2O solutions, individually. Reusability of the biomass was examined under consecutive biosorption–desorption cycles repeating five times. The most interesting finding of the study is the idea of utilizing the EDTA–Cu complex, which can be qualified as a residual from desorption processes, as a liquid chemical fertilizer in agricultural applications.  相似文献   

8.
《Process Biochemistry》2004,39(11):1643-1651
The iron biosorption capacity of a Streptomyces rimosus biomass treated with NaOH was studied in batch mode. After pretreatment of biomass at the ambient temperature, optimum conditions of biosorption were found to be: a biomass particle size between 50 and 160 μm, an average saturation contact time of 4 h, a biomass concentration of 3 g/l and a stirring speed of 250 rpm. The equilibrium data could be fitted by Langmuir isotherm equation. Under these optimal conditions, 122 mg Fe/gbiomass were fixed.  相似文献   

9.
BackgroundThe use of basidiomycetes for metal removal is an alternative to traditional methods. In this, the biomass acts as a natural ionic exchanger removing metals from solution.ObjectiveTo develop a laminar biosorbent using a basidiomycete fungus resistant to high Cd, Ni and Pb concentrations.MethodsThe tolerance of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium was evaluated using increasing concentrations of the heavy metal salts, cadmium sulphate, lead acetate and nickel chloride. A biosorbent system was developed based on polyethylene sheets with a fungal biomass. It was evaluated in bubble columns using synthetic wastewater with the 3 metal salts at a rate of 300 mg/l. Finally, in a complementary experiment using shake flasks, the effect of a higher amount of biomass related to the metal removal efficiency was evaluated.ResultsP. chrysosporium strain was more tolerant to C4H6O4Pb (10,000 mg/l), Cl2Ni (300 mg/l) and CdSO4·8H2O (1,500 mg/l). In a reactor, under non-ligninolytic conditions, the fungus removed 69% of the chemical oxygen demand and produced enzymes such as LiP (0.01 U/l) and MnP (0.6 U/l.). An accumulation of metals in the wall was observed. By increasing the biomass to 1.6 (w/v), the metal biosorption was favored in the mixture (57% Pb, 74% Cd, and 98% Ni) and separately (95% Pb, 60% Cd, and 56% Ni). Competition between Ni and Pb by ligands of the wall was observed.ConclusionA novel laminar system based on P. chrysosporium viable biomass was developed. It has a large surface area and tolerance to high concentrations of Cd, Ni and Pb. It seems to be an alternative for the removal of metals from water.  相似文献   

10.
The characteristics of problematic biofilms (i.e., fouling and clogging layers) were studied with regards to the removal and fate of trace metals (contents well under 100 μg/L) during the long-term operation of a pilot-scale membrane bioreactor for the treatment of real wastewaters from a large industrial area.Results showed that clogging layer was more effective than suspended activated sludge in the biosorption of As > Zn > Ni > Cd > Sb > Fe > Se due to the synergic effects of extracellular polymeric compounds and metal-resistant bacteria. In fact the selective microbial speciation of the phylum of Bacteroidetes, which is highly resistant to heavy metals, was observed in the clogging sludge in spite of the very low concentration of dissolved metals in the bioreactor.Compared to the suspended activated sludge, the clogging layer enhanced the biosorption of very toxic substances such as As, Cd and Ni. In fact, the metal contents were respectively: 7.9–7.4 vs. 690–840 μgAs/kgTS; 1.5–2.2 vs. 149–219 μgCd/kgTS; 58.8–71.7 vs. 227–298 μgNi/kgTS. Then, the potential desorption of metals during the membrane acid cleanings was estimated as relevant as 10–15% of the metals associated to the clogging sludge. The combined effects of pH and the selected microbial community, and the minor effect of the redox potential, let us conclude on the major importance of bio-sorption/desorption mechanisms with respect to bio-precipitation/dissolution.  相似文献   

11.
Recently, a bubbleless membrane bioreactor (BMBR) has been successfully developed for biosurfactant production by Bacillus subtilis [1]. In this study, for the first time, continuous culture were carried out for the production of surfactin in a BMBR, both with or without a coupled microfiltration membrane. Results from continuous culture showed that a significant part of biomass was immobilized onto the air/liquid membrane contactor. Immobilized biomass activity onto the air/liquid membrane contactor was monitored using a respirometric analysis. Kinetics of growth, surfactin and primary metabolites production were investigated. Planktonic biomass, immobilized biomass and surfactin production and productivity obtained in batch culture (3 L) of 1.5 days of culture were 4.5 g DW, 1.3 g DW, 1.8 g and 17.4 mg L?1 h?1, respectively. In continuous culture without total cell recycling (TCR), the planktonic biomass was leached, but immobilized biomass reached a steady state at an estimated 6.6 g DW. 11.5 g of surfactin was produced after 3 days of culture, this gave an average surfactin productivity of 54.7 mg L?1 h?1 for the continuous culture, which presented a surfactin productivity of 30 mg L?1 h?1 at the steady state. TCR was then investigated for the continuous production, extraction and purification of surfactin using a coupled ultrafiltration step. In continuous culture with TCR at a dilution rate of 0.1 h?1, planktonic biomass, immobilized biomass, surfactin production and productivity reached 7.5 g DW, 5.5 g DW, 7.1 g and 41.6 mg L?1 h?1 respectively, after 2 days of culture. After this time, biomass and surfactin productions stopped. Increasing dilution rate to 0.2 h?1 led to the resumption of biomass and surfactin production and these values reached 11.1 g DW, 10.5 g DW, 7.9 g and 110.1 mg L?1 h?1, respectively, after 3 days of culture. This study has therefore shown that with this new integrated bioprocess, it was possible to continuously extract and purify several grams of biosurfactant, with purity up to 95%.  相似文献   

12.
Nickel (Ni) may impair plant water balance through detrimental effects on the belowground level. Bilberry (Vaccinium myrtillus L.) plants were grown in a mesic heath forest-type soil and subjected to Ni sulphate (NiSO4·6H2O) concentrations of 0, 10, 50, 100 and 500 mg m−2 during an entire growing season in northern Finland (65°N). Biomass of belowground rhizomes, and tissue water content (TWC) and anthocyanin concentrations of aerial shoots were determined from mature plants in order to study rhizospheric Ni stress, and its possible long-distance effects on aerial shoots. As the major proportion of biomass of bilberry is invested in belowground parts, it was hypothesised that Ni-induced rhizospheric disturbance causes water stress in aerial shoots and increases their anthocyanin concentrations for osmotic regulation. Uptake of Ni from the soil to the rhizome and aerial shoots was measured with X-ray fluorescence spectrometry. Ni concentrations in the soil and rhizome exhibited a dose–response relationship, but the concentrations in the rhizome were about 10-fold lower (<3 mg Ni kg−1) than those in the soil (<30 mg Ni kg−1). Translocation of Ni from the rhizome to aerial shoots did not occur, as Ni concentrations in shoots remained at 1 mg Ni kg−1. Although Ni concentrations in the rhizome were below the threshold values of Ni toxicity (i.e. 10–50 mg Ni kg−1), Ni decreased the rhizome biomass. Anthocyanins decreased in aerial shoots along with the Ni accumulation in the rhizome, while TWC was unaffected. The result suggests that anthocyanins are not involved in osmotic regulation under Ni stress, since anthocyanins in aerial shoots responded to the Ni concentrations in the rhizome despite the lack of water stress.  相似文献   

13.
In order to understand the biosorption of Basic Organic (BO) textile dye on dried Azolla filiculoides (A. filiculoides), batch experiments were conducted under various conditions. The results show that biosorption of BO on dried A. filiculoides was dependent on the initial solution pH, biosorbent dosage, contact time and the initial BO concentration. Using the Langmuir equation, the biosorption capacity (qm) for BO was 833 mg/g at 303 K. The kinetic study suggested that the mechanism of biosorption was due to ion-exchange physisorption via the intra-particle diffusion and chemisorption on the external surface of dried A. filiculoides. Different techniques were used to characterize dried A. filiculoides and indicated that the biomass had a high cation exchange capacity (93.6 mmol/100 g), a large specific surface area (80.35–422.89 m2/g) and contained various functional groups which may play an important role in the physisorption and chemisorption of BO on the surface of A. filiculoides. The results showed that the removal ratio of BO reached 79.3% from wastewater containing 100 mg/L BO, indicating that the biomass could be used as a potential biosorbent for the removal of BO from industrial wastewater.  相似文献   

14.
Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions under live-cell conditions. In this Letter, we report the design of the binuclear Ni(II)–iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag-fused proteins. We found that the Ni(II)–IDA complex 1-2Ni(II) binds to the His6-tag (HHHHHH) with a strong binding affinity (Kd = 24 nM), the value of which is 16-fold higher than the conventional Ni(II)–NTA complex (Kd = 390 nM). The strong binding affinity of the Ni(II)–IDA complex was successfully used in the covalent labeling and fluorescence bioimaging of a His-tag fused GPCR (G-protein coupled receptor) located on the surface of living cells.  相似文献   

15.
《Process Biochemistry》2014,49(5):807-812
Under the deacetylation of fungal endophyte Penicillium canescens, which was isolated from pigeon pea, a novel and highly efficient biotransformation method of astragalosides to astragaloside IV in Radix Astragali was investigated. After single factor tests of the biotransformation procedure, the optimum biotransformation conditions were confirmed as the liquid solid ratio 20:1, the biotransformation temperature 30 °C, time 36 h and pH 7, respectively. Final content of astragaloside IV in Radix Astragali reached 7.66 ± 0.44 mg/g, which was 5.51-fold to that of untreated one and contents of astragaloside I and astragaloside II significantly decreased. The immobilized Ca-alginate gel beads with P. canescens could be reused at least for 13 runs. This is the first report that fungal endophyte was applied for the biotransformation of astragalosides to astragaloside IV in Radix Astragali and this novel high-efficiency biotransformation method will be an alternative to enhance the content of astragaloside IV in Radix Astragali in commercial process.  相似文献   

16.
Equilibrium, kinetics and thermodynamic studies on the removal of Acid Red 57 (AR57) by biosorption onto dried Cephalosporium aphidicola (C. aphidicola) cells have been investigated in a batch system with respect to pH, contact time and temperature. The results showed that the equilibrium time was attained within 40 min and the maximum biosorption capacity of AR57 dye onto C. aphidicola cells was 2.08 × 10−4 mol g−1 or 109.41 mg g−1 obtained after contact with 0.4 g dm−3 biosorbent concentration, pH0 of 1 and at a temperature of 20 °C. The pseudo-second-order kinetic model was observed to provide the best correlation of the experimental data among the kinetic models studied. Biosorption isotherm models were developed and the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models were conformed well to the experimental data. The changes of free energy, enthalpy and entropy of biosorption were also evaluated for the biosorption of AR57 dye onto C. aphidicola cells.  相似文献   

17.
《Process Biochemistry》2014,49(4):660-667
This study investigated the novel use of scouring pad cubes as a support matrix for immobilization of fungal cell to enhance the pectinase production. Nylon scouring pad cubes were used for immobilized Aspergillus niger HFD5A-1 cells for pectinase production in flask submerge fermentation system. The enzyme activity of immobilized cell in scouring pad cubes gave higher activity compared to free cells. Various physical parameters for culture condition were studied to evaluate its effects on pectinase production. The maximum enzyme activity obtained was 11.05 U/mL on the 6th day of cultivation after using the optimized parameters of 6 scouring pad cubes, 1 × 107 spores/mL of inoculum size, agitation speed of 150 rpm and incubated at 30 °C. The use of nylon scouring pad cubes gave an increment of about 335.0% of pectinase production (11.05 U/mL) compared to free cells (2.54 U/mL). The results therefore show scouring pad cubes could be a favorable carrier to immobilize the fungal cells for higher enzyme production in submerged fermentation.  相似文献   

18.
Lead (Pb) is a substantial contaminant in the environment and a potent toxin for living organisms. Current study describes probiotic characteristics of Pb-biosorbing lactic acid bacteria (LAB), and response surface methodology (RSM) based optimization of physical conditions for maximum Pb biosorption. A total of 18 LAB, isolated from carnivore feces (n = 8) and human breast milk (n = 9), along with one reference strain Lactobacillus acidophilus ATCC4356 were included in the study. Pb biosorption was strain specific. Eight strains, demonstrating ≥ 70 % lead biosorption, were selected for further testing. The lactobacillus-Pb complex was found to be stable and strains had a negative surface charge. The strains displayed good probiotic properties with the survival rate of 71–90 % in simulated gastric environment, 36–69 % in intestinal condition (1.8 % bile salts) and 55–72 % hydrophobicity. On the basis of excellent probiotic ability, Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779 were selected for optimization of physical conditions of Pb biosorption through RSM. Maximum biosorption was observed at pH 6 in 60 min at a cell density of 1 g/L. L. brevis MZ384011 and L. brevis MW362779 are recommended for experimentation on Pb toxicity amelioration and safety evaluation in in-vivo setting.  相似文献   

19.
Crude glycerol from the biodiesel industry was used as carbon source for high cell density fed-batch cultivation of Pichia pastoris aiming at producing a chitin–glucan complex (CGC). More than 100 g L?1 biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g g?1 during the batch phase and 0.63 g g?1 during the fed-batch phase. The chitin–glucan complex was recovered from the yeast cell wall by hot alkaline extraction. CGC content in the cell wall was found to be relatively constant throughout the cultivation (18–26%) with a volumetric productivity of 1.28 g L?1 h?1 at the end of the fed-batch phase. The molar ratio of chitin:β-glucan in the extracted biopolymer was 16:84, close to other CGC extracted from Aspergillus biomass. The extracted polymer was characterized by Differential Scanning Calorimetry (DCS) and solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and compared with commercial biopolymers, namely, crab shell chitin and/or chitosan, algal β-glucan (laminarin) and fungal chitin–glucan complex (kiOsmetine).  相似文献   

20.
This paper demonstrates, for the first time, the use of resorcinol–formaldehyde carbon gels (RFCs) as enzyme carriers. The immobilization behavior of Bacillus licheniformis serine protease in RFCs of different pore characters was investigated. RFCs derived with (RF1) and without (RF2) cationic surfactant (trimethylstearylammonium chloride; C18) resulted in predominantly microporous, and mesoporous characters, respectively. It was found that support pore size and volume were key parameters in determining immobilized enzyme loading, specific activity, and stability. RF2, with higher mesopore volume (Vmes: RF1 = 0.21 cm3/g; RF2 = 0.81 cm3/g) and mesopore size radius (RF1 = 1.7–3.8 nm; RF2 = 7.01 nm), accommodated approximately fourfold more enzyme than RF1. Serine protease loading in RF2 could reach as high as 21.05 unit/g support. In addition, RF2 was found to be a better support in terms of serine protease operation and storage stability. Suitable mesopore size likely helped preventing immobilized enzyme from structural denaturation due to external forces and heat. However, immobilized enzyme in RF1 gave 12.8-fold higher specific activity than in RF2, and 2.1-fold higher than soluble enzyme. Enzyme leaching was found to be problematic in both supports, nonetheless, higher desorption was observed in RF2. Enhancement of interaction between serine protease and RFCs as well as pore size adjustment will be necessary for repeated use of the enzyme and further process development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号