首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour.  相似文献   

2.
The presence of lignin is known to reduce the efficiency of the enzymatic hydrolysis of lignocellulosic raw materials. On the other hand, solubilization of hemicellulose, especially of xylan, is known to enhance the hydrolysis of cellulose. The enzymatic hydrolysis of spruce, recognized among the most challenging lignocellulosic substrates, was studied by commercial and purified enzymes from Trichoderma reesei. Previously, the enzymatic hydrolysis of steam pretreated spruce has been studied mainly by using commercial enzymes and no efforts have been taken to clarify the bottlenecks by using purified enzyme components.Steam-pretreated spruce was hydrolyzed with a mixture of Celluclast and Novozym 188 to obtain a hydrolysis residue, expectedly containing the most resistant components. The pretreated raw material and the hydrolysis residue were analyzed for the enrichment of structural bottlenecks during the hydrolysis. Lignin was removed from these two materials with chlorite delignification method in order to eliminate the limitations caused by lignin. Avicel was used for comparison as a known model substrate. Mixtures of purified enzymes were used to investigate the hydrolysis of the individual carbohydrates: cellulose, glucomannan and xylan in the substrates. The results reveal that factors limiting the hydrolysis are mainly due to the lignin, and to a minor extent by the lack of accessory enzymes. Removal of lignin doubled the hydrolysis degree of the raw material and the residue, and reached close to 100% of the theoretical within 2 days. The presence of xylan seems to limit the hydrolysability, especially of the delignified substrates. The hydrolysis results also revealed significant hemicellulose impurities in the commonly used cellulose model substrate, making it questionable to use Avicel as a model cellulose substrate for hydrolysis experiments.  相似文献   

3.
为了提高沙柳生物转化过程的经济可行性,考察了沙柳原料经过蒸爆、超微粉碎+稀酸、超微粉碎+稀碱预处理后高浓度底物补料酶解的效果,并对其高浓度水解糖液进行了乙醇发酵。结果表明:蒸爆处理法水解效果最好,通过补料酶解,底物质量分数可以达到30%,酶解液中总糖质量浓度达到132 g/L,葡萄糖质量浓度105 g/L;超微粉碎+稀酸预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度达到123 g/L,葡萄糖质量浓度73 g/L;超微粉碎+稀碱预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度133 g/L,葡萄糖质量浓度77 g/L。3种预处理使沙柳原料的酶解糖液都可以较好地被酿酒酵母利用发酵产乙醇,蒸爆处理原料的酶解糖液乙醇发酵效果最好,乙醇质量浓度达到47 g/L。  相似文献   

4.
The feasibility of using a laboratory peg mixer to carry out high consistency enzymatic hydrolysis of lignocellulosic substrates was investigated. Two hardwood substrates, unbleached hardwood pulp (UBHW) and organosolv pretreated poplar (OPP), were used in this study. Hydrolysis of UBHW and OPP at 20% substrate consistency led to a high glucose concentration in the final hydrolysate. For example, a 48 h enzymatic hydrolysis of OPP resulted in a hydrolysate with 158 g/L of glucose. This is the highest glucose concentration ever obtained from enzymatic hydrolysis of lignocellulosic substrates. Fermentation of UBHW and OPP hydrolysates with high glucose content led to high ethanol concentrations, 50.4 and 63.1 g/L, respectively after fermentation. Our results demonstrate that using common pulping equipment to carry out high consistency hydrolysis can overcome the rheological problems and greatly increase the sugar and ethanol concentrations after the hydrolysis and fermentation.  相似文献   

5.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
Thermo-mechanical extrusion pretreatment for lignocellulosic biomass was investigated using soybean hulls as the substrate. The enzyme cocktail used to hydrolyze pretreated soybean hulls to fermentable sugars was optimized using response surface methodology (RSM). Structural changes in substrate and sugar yields from thermo-mechanical processing were compared with two traditional pretreatment methods that utilized dilute acid (1% sulfuric acid) and alkali (1% sodium hydroxide). Extrusion processing parameters (barrel temperature, in-barrel moisture, screw speed) and processing aids (starch, ethylene glycol) were studied with respect to reducing sugar and glucose yields. The conditions resulting in the highest cellulose to glucose conversion (95%) were screw speed 350 rpm, maximum barrel temperature 80 °C and in-barrel moisture content 40% wb. Compared with untreated soybean hulls, glucose yield from enzymatic hydrolysis of soybean hulls increased by 69.6%, 128.7% and 132.2%, respectively, when pretreated with dilute acid, alkali and extrusion.  相似文献   

7.
A multireaction kinetic model was developed for closed-system enzymatic hydrolysis of lignocellulosic biomass such as corn stover. Three hydrolysis reactions were modeled, two heterogeneous reactions for cellulose breakdown to cellobiose and glucose and one homogeneous reaction for hydrolyzing cellobiose to glucose. Cellulase adsorption onto pretreated lignocellulose was modeled via a Langmuir-type isotherm. The sugar products of cellulose hydrolysis, cellobiose and glucose, as well as xylose, the dominant sugar prevalent in most hemicellulose hydrolyzates, were assumed to competitively inhibit the enzymatic hydrolysis reactions. Model parameters were estimated from experimental data generated using dilute acid pretreated corn stover as the substrate. The model performed well in predicting cellulose hydrolysis trends at experimental conditions both inside and outside the design space used for parameter estimation and can be used for in silico process optimization.  相似文献   

8.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The influence of cellulose accessibility and protein loading on the efficiency of enzymatic hydrolysis of steam pretreated Douglas-fir was assessed. It was apparent that the lignin component significantly influences the swelling/accessibility of cellulose as at low protein loadings (5 FPU/g cellulose), only 16% of the cellulose present in the steam pretreated softwood was hydrolyzed while almost complete hydrolysis was achieved with the delignified substrate. When lignin (isolated from steam pretreated Douglas-fir) was added back in the same proportions it was originally found to the highly accessible and swollen, delignified steam pretreated softwood and to a cellulose control such as Avicel, the hydrolysis yields decreased by 9 and 46%, respectively. However, when higher enzyme loadings were employed, the greater availability of the enzyme could overcome the limitations imposed by both the lignin’s restrictions on cellulose accessibility and direct binding of the enzymes, resulting in a near complete hydrolysis of the cellulose.  相似文献   

10.
Partial acid hydrolysis was studied as a per treatment to enhance enzymatic hydrolysis, such a pretreatment was carried out in a continuous flow reactor on oak corn Stover, newsprint, and Solka Floc at temperatures ranging from 160 to 220°C, acid concentration ranging from 0 to 1.2%, and a fixed treatment time of 0.22 min. The resulting slurries and solids were than hydrolyzed with Trichoderma ressei QM 9414 cellulase at 50°C for 48 hr. For all substrates except Solka Floc, increased glucose yields were achieved during enzymatic hydrolysis of the pretreated materials as compared to hydrolysis of the original substrate. In several cases, after pretreatment, 100° of the potential glucose content of the substrate was converted to glucose after 24hr of enzymatic hydrolysis. It is felt that the increased glucose yields achieved after this pretreatment are due to acid's removal of hemicellulose, reduced degree of polymerization, and possibly due to a change in the crystal structure of the cellulose.  相似文献   

11.
Enzymatic hydrolysis of cellulose is potentially an attractive method for converting cellulose into glucose which can then be used as a chemical feed or as a growth substrate for a number of microorganisms to produce microbial products. An enzymatic hydrolysis of wheat straw with cellulase preparation “Trichocease” was made. The wheat straw used was pretreated mechanically and with NaOH. A procedure of pretreatment was investigated in 26 variants. The dynamics of enzymatic hydrolysis was studied. An assay of this dynamics based on the amount of reducing sugars formed during the cellulase reaction and depending upon enzyme and substrate concentration and time of action was carried out.  相似文献   

12.
The effects of surfactants on the pretreatment and enzymatic hydrolysis stages of recycled newspaper processing were examined. Newspaper substrate was pretreated with surfactants at 40°C and 400 rpm for 1 h, and the enzymatic digestibilities of the pretreated substrate were compared. NP-20 was 10–20% more effective as a surfactant than Tween-20 and Tween-80. To investigate the effects of the surfactants on the subsequent enzymatic hydrolysis stage, the newspaper was pretreated with NP-20 and then hydrolyzed in the presence of TW-20 or TW-80. TW-80 showed an approximate 7% higher digestibility than TW-20. The surfactant effect on the hydrolysis of the untreated newspaper was significant, whereas the surfactant effect on the hydrolysis of the surfactant-pretreated newspaper was marginal. When the digestibilities of the pure cellulose substrates (α-cellulose and filter paper) were examined, markedly different surfactant effects were observed. In contrast to the newspaper substrate, the surfactant-pretreated pure cellulose substrates had a significant effect on digestibility when they were hydrolyzed in the presence of a surfactant, indicating that the surfactant effect on digestibility is highly dependent on substrate type.  相似文献   

13.
The effect of delignification of forest biomass on enzymatic hydrolysis   总被引:1,自引:0,他引:1  
Yu Z  Jameel H  Chang HM  Park S 《Bioresource technology》2011,102(19):9083-9089
The effect of delignification methods on enzymatic hydrolysis of forest biomass was investigated using softwood and hardwood that were pretreated at an alkaline condition followed by sodium chlorite or ozone delignification. Both delignifications improved enzymatic hydrolysis especially for softwood, while pretreatment alone was found effective for hardwood. High enzymatic conversion was achieved by sodium chlorite delignification when the lignin content was reduced to 15%, which is corresponding to 0.30-0.35 g/g accessible pore volume, and further delignification showed a marginal effect. Sample crystallinity index increased with lignin removal, but it did not show a correlation with the overall carbohydrate conversion of enzymatic hydrolysis.  相似文献   

14.
It is recognized that some form of post‐treatment will usually be required if reasonable hydrolysis yields (>60%) of steam pretreated softwood are to be achieved when using low enzyme loadings (5 FPU/g cellulose). In the work reported here we modified/removed lignin from steam pretreated softwood while investigating the influence that the severity of pretreatment might have on the effectiveness of subsequent post‐treatments. Although treatment at a lower severity could provide better overall hemicellulose recovery, post‐treatment was not as effective on the cellulosic component. Pretreatment at medium severity resulted in the best compromise, providing reasonable recovery of the water soluble hemicellulose sugars and the use of post‐treatment conditions that significantly increased the enzymatic hydrolysis of the water insoluble cellulosic component. Post‐treatment with alkaline hydrogen peroxide or neutral sulfonation resulted in 62% cellulose hydrolysis at an enzyme loading of 5 FPU/g cellulose, which was four times greater than was obtained when the cellulosic fraction was not post‐treated. When the enzyme loading was increased to 15 FPU/g cellulose, the post‐treated cellulosic fraction was almost completely hydrolyzed to glucose. Despite the higher lignin content (44%) of the sulfonated substrate, similar hydrolysis yields to those achieved after alkaline peroxide post‐treatment (14% lignin content) indicated that, in addition to lignin removal, lignin modification also plays an important role in influencing the effectiveness of hydrolysis when low enzyme loadings are used. Biotechnol. Bioeng. 2011;108: 2300–2311. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
The effect of particle size on enzymatic hydrolysis of cellulose has been investigated. The average size of microcrystalline cotton cellulose has been reduced to submicron scale by using a media mill. The milled products were further subjected to hydrolysis using cellulase. High cellulose concentration (7%) appeared to retard the size reduction and resulted in greater particles and smaller specific surface areas than those at low concentration (3%) with the same milling time. Initial rate method was employed to explore the rate of enzymatic hydrolysis of cellulose. The production rate of cellobiose was increased at least 5-folds due to the size reduction. The yield of glucose was also significantly increased depending upon the ratio of enzyme to substrate. A high glucose yield (60%) was obtained in 10-h hydrolysis when the average particle size was in submicron scale.  相似文献   

16.
The use of alcohol/water/catalyst mixtures to delignify wood allows the lignin to be recovered in a usable form while leaving the carbohydrate fraction relatively intact. The effects of temperature, reaction time, and the type of solvent and catalyst on the delignification of milled poplar wood were investigated. The lignin, cellulose, and hemicellulose composition of the pretreated material was measured for each treatment condition. In addition, the pretreated samples were subjected to enzymatic hydrolysis using the cellulases produced by the thermophilic bacterium Thermomonospora sp. YX. The extent of enzymatic hydrolysis was characterized using an empirical model, and the results were used to examine the effectiveness of the pretreatment.  相似文献   

17.
Ionic liquids (ILs) are promising solvents for the pretreatment of biomass as certain ILs are able to completely solubilize lignocellulose. The cellulose can readily be precipitated with an anti-solvent for further hydrolysis to glucose, but the anti-solvent must be removed for the IL to be recovered and recycled. We describe the use of aqueous kosmotropic salt solutions to form a three-phase system that precipitates the biomass, forming IL-rich and salt-rich phases. The phase behavior of [Emim][Ac] and aqueous phosphate salt systems is presented, together with a process for recycling the [Emim][Ac] and enzymatically hydrolyzing the cellulose. This process reduces the amount of water to be evaporated from recycled IL, permitting efficient recycle of the IL. Material balances on the process, with multiple recycles of the [Emim][Ac], quantify the major components from a Miscanthus feedstock through the pretreatment, separation, and enzymatic hydrolysis steps. A more rapid and higher yielding conversion of cellulose to glucose is obtained by use of the three-phase system as compared to the cellulose obtained from biomass pretreated with IL and precipitated with water. The addition of a kosmotropic salt during the precipitation results in partial delignification of the biomass, which makes the substrate more accessible, enhancing the enzymatic hydrolysis.  相似文献   

18.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

19.
The effect of different treatments on the enzymatic hydrolysis of furfural residue (FR) was investigated in delignification and structural features. In this case, hot water, ethanol, sodium hydroxide, alkali ethanol, and alkaline hydrogen peroxide solution (AHP) were selected as the delignification solvents. The structure and morphology of the original and treated samples were comparatively studied by diffuse reflectance infrared Fourier transform spectrometry (DRIFT), XRD, SEM, and CP/MAS 13C NMR. After AHP treatment, the ratio of total lignin to cellulose content in FR and the absorbance ratio of lignin to cellulose (A 1508/A 1057) on the sample surface in the DRIFT spectra was reduced from 0.99 to 0.13 and from 0.40 to 0.04, respectively, which resulted in the highest conversion of cellulose to glucose (99.3 %). It was found that the crystallinity index of FR linearly increased with the decrease of total lignin to cellulose ratio. DRIFT analysis indicated that the high lignin content on the sample surface resulted in a low enzymatic hydrolysis efficiency.  相似文献   

20.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号