首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Extracellular lipase production by Yarrowia lipolytica was increased by mutant selection from 28 U/ml to 1000 U/ml. This activity was also reached in a 500 l bioreactor. The properties of the mutant lipase were the same of those of the wild type: M 38 kDa, optimum pH 7 and optimum temperature 37¡C.  相似文献   

2.
Aims: To study the cellular growth and morphology of Yarrowia lipolytica W29 and its lipase and protease production under increased air pressures. Methods and Results: Batch cultures of the yeast were conducted in a pressurized bioreactor at 4 and 8 bar of air pressure and the cellular behaviour was compared with cultures at atmospheric pressure. No inhibition of cellular growth was observed by the increase of pressure. Moreover, the improvement of the oxygen transfer rate (OTR) from the gas to the culture medium by pressurization enhanced the extracellular lipase activity from 96·6 U l?1 at 1 bar to 533·5 U l?1 at 8 bar. The extracellular protease activity was reduced by the air pressure increase, thereby eliciting further lipase productivity. Cell morphology was slightly affected by pressure, particularly at 8 bar, where cells kept the predominant oval form but decreased in size. Conclusions: OTR improvement by total air pressure rise up to 8 bar in a bioreactor can be applied to the enhancement of lipase production by Y. lipolytica. Significance and Impact of the Study: Hyperbaric bioreactors can be successfully applied for yeast cells cultivation, particularly in high‐density cultures used for enzymes production, preventing oxygen limitation and consequently increasing overall productivity.  相似文献   

3.
Wild-type (WT) Yarrowia lipolytica strain secretes a major extracellular lipase Lip2p which is glycosylated. In silico sequence analysis reveals the presence of two potential N-glycosylation sites (N113IS and N134NT). Strains expressing glycosylation mutant forms were constructed. Esterase activities for the different forms were measured with three substrates: p-nitrophenol butyrate (p-NPB), tributyrin and triolein. Sodium dodecyl sulfate polacrylamide gel electrophoresis analysis of supernatant indicated that the suppression of the two sites of N-glycosylation did not affect secretion. S115V or N134Q mutations led to lipase with similar specific activity compared with WT lipase while a T136V mutation reduced specific activity toward p-NPB and tributyrin. Electrospray ionization MS of the WT entire protein led to an average mass of 36 950 Da, higher than the mass deduced from the amino acid sequence (33 385 Da) and to the observation of at least two different mannose structures: Man(8)GlcNAc(2) and Man(9)GlcNAc(2). LC-tandem MS analysis of the WT Lip2p after trypsin and endoproteinase Asp-N treatments led to high coverage (87%) of protein sequence but the peptides containing N113 and N134 were not identified. We confirmed that the presence of N-glycosylation occurred at both N113 and N134 by MS of digested proteins obtained after enzymatic deglycosylation or from mutant forms.  相似文献   

4.
In this study an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate was tested for the purification of lipase from Yarrowia lipolytica IMUFRJ 50682. Ultrafiltration and precipitation with acetone and kaolin were also used as traditional comparison methods Ultrafiltration was a good method with a purification factor of 6.55, but protease was also purified in this extract. For the precipitation with acetone and kaolin lower values of lipase and protease activity were found in relation to the original crude enzyme extract. Under the best conditions of ATPS (pH 6 and 4 °C), the purification fold was greater than 40 and selectivity was almost 500. Lipase was recovered in the salty phase which makes it easier to purify it. The optimum pH and temperature ranges for purified lipase with this system was 6–7 and 35–40 °C, respectively. Lipase thermostability was increased in relation to crude extract after the purification with the PEG/phosphate buffer system for temperatures lower than 50 °C. All enzyme extracts showed good stability to a wide pH range. Y. lipolytca lipase was successfully purified by using ATPS in a single downstream processing step and presented good process characteristics after this treatment.  相似文献   

5.
AIMS: To analyse the influence of nitrogen and carbon sources on extracellular lipase production by Yarrowia lipolytica-overproducing mutant in order to optimize its production in large-scale bioreactors. METHODS AND RESULTS: The level of lipase production and LIP2 induction, measured using an LIP2-LacZ reporter gene, were compared for different carbon and nitrogen sources and for different concentrations. The localization of the enzyme during growth was also determined by Western blotting analysis using a six-histidine-tagged lipase. SIGNIFICANCE AND IMPACT OF THE STUDY: Tryptone N1 and oleic acid are the most suitable nitrogen and carbon sources for the production of the extracellular lipase by the Y. lipolytica mutant. Higher levels of lipase production were obtained as the tryptone concentration increased in the culture medium. Such a positive correlation was not observed with oleic acid media where the highest lipolytic productivities were obtained in the presence of low concentration. We also demonstrate that in the presence of oleic acid, lipase is cell-bound during the growth phase before being released in the media. CONCLUSIONS: This work provides a better understanding of the mechanism controlling LIP2 expression and, thus, extracellular lipase production in the yeast Y. lipolytica.  相似文献   

6.
The production of lipases by microorganisms is strongly influenced by the culture conditions. The optimum culture conditions for enzyme production are strain- and species-dependent. The aim of this study was to evaluate the impact of the carbon source used in the culture medium on the profile of lipases produced by Yarrowia lipolytica KKP 379. We observed a different pattern of extracellular and cell-bound lipase production, which was the highest in the early exponential phase. The extracellular lipase activity increased in the late exponential phase due to the lower accumulation of lipase molecules in cell walls. The best carbon source for extracellular lipase production by Y. lipolytica KKP 379 was olive oil. Glucose, dodecane and olive oil had a positive effect on biomass yield. Dodecane and/or glycerol utilization in microbiological lipase production was possible, but this process could not proceed without the addition of some activators such as olive oil in the cultivation medium.  相似文献   

7.
The LIP2 lipase from the yeast Yarrowia lipolytica (YLLIP2) was obtained from two genetically modified strains with multi-copies of the lip2 gene and further purified using gel filtration and cation exchange chromatography. Four YLLIP2 isoforms were identified and subjected to N-terminal amino-acid sequencing and mass spectrometry analysis. These isoforms differed in their glycosylation patterns and their molecular masses ranged from 36,874 to 38,481 Da, whereas the polypeptide mass was 33,385 Da. YLLIP2 substrate specificity was investigated using short (tributyrin), medium (trioctanoin) and long (olive oil) chain triglyceride substrates at various pH and bile salt concentrations, and compared with those of human gastric and pancreatic lipases. YLLIP2 was not inhibited by bile salts at micellar concentrations with any of the substrates tested, and maximum specific activities were found to be 10,760+/-115 U/mg on tributyrin, 16,920+/-480 U/mg on trioctanoin and 12,260+/-700 U/mg on olive oil at pH 6.0. YLLIP2 was found to be fairly stable and still active on long chain triglycerides (1590+/-430 U/mg) at pH 4.0, in the presence of bile salts. It is therefore a good candidate for use in enzyme replacement therapy as a means of treating pancreatic exocrine insufficiency.  相似文献   

8.
《Process Biochemistry》2007,42(3):384-391
An extracellular lipase from Yarrowia lipolytica (YlLip2) has been purified by ion exchange chromatography on Q sepharose FF, followed by hydrophobic interaction chromatography on butyl sepharose FF. SDS-PAGE showed that the molecular weight of this lipase is about 38 kDa. N-terminal amino acid sequencing and MALDI-TOF mass spectral analysis showed that this lipase is encoded by gene LIP2 (GenBank accession no. AJ012632). Enzymatic deglycosylation showed that this lipase is a glycosylated protein which contains about 12% sugar. The corresponding deglycosylated lipase remained 88% specific activity of untreated lipase. There was a high amino acid sequence identity (91%) between YlLip2 and Candida deformans lipase CdLip1 (GenBank accession no. AJ428393). The optima temperature and pH for the purified lipase was 40 °C and 8.0, respectively. The lipase showed a preference for long chain fatty acid methyl esters (C12–C16), with the highest activity toward methyl myristate (C14). Lipase activity was stimulated by Ca2+ and Mg2+ and inhibited by Zn2+, Ni2+ and Cu2+, whereas EDTA had no effect on its activity. A 0.1% of Tween 80 and Span 65 increased slightly the enzyme activity and SDS inhibited it.  相似文献   

9.
赵鹤云  肖潇  徐莉  刘云  闫云君 《微生物学报》2011,51(10):1374-1381
【目的】克隆解脂耶氏酵母(Yarrowia lipolytica)脂肪酶LIP4和LIP5的cDNA序列,研究其基因结构,并实现其在毕赤酵母中的功能表达,以探讨其酶学性质。【方法】利用反转录PCR首次扩增LIP4和LIP5的编码基因,用SignalP 3.0分析其基因序列,然后分别构建胞内表达载体pPIC3.5K-Lip4、pPIC3.5K-Lip5和胞外表达载体pPIC9K-Lip4、pPIC9K-Lip5,将其转入毕赤酵母GS115中表达,以NTA树脂纯化酶蛋白,研究其酶学性质。【结果】cDNA序列测序结果显示两者均不含内含子,酶蛋白的氨基酸序列中含有典型脂肪酶的活性三联体结构和五肽保守区;酶学性质研究表明,两者的最适底物均为癸酸(C8)对硝基苯酚酯,最适pH为7.0,最适温度为40℃,但LIP4对pH和温度更敏感;两者均能被Ca2+激活,且LIP5还能为Mg2+激活,但均被Hg2+、乙二胺四乙酸(EDTA)和苯甲基磺酰氟(PMSF)强烈抑制。【结论】首次克隆了解脂耶氏酵母脂肪酶LIP4和LIP5编码基因,实现了其在毕赤酵母中的活性表达,并初步研究了其酶学性质,为上述脂肪酶的应用及进一步深入研究解脂耶氏酵母脂肪酶家族奠定了基础。  相似文献   

10.
We isolated the LIP2 gene from the lipolytic yeast Yarrowia lipolytica. It was found to encode a 334-amino-acid precursor protein. The secreted lipase is a 301-amino-acid glycosylated polypeptide which is a member of the triacylglycerol hydrolase family (EC 3.1.1.3). The Lip2p precursor protein is processed by the KEX2-like endoprotease encoded by XPR6. Deletion of the XPR6 gene resulted in the secretion of an active but less stable proenzyme. Thus, the pro region does not inhibit lipase secretion and activity. However, it does play an essential role in the production of a stable enzyme. Processing was found to be correct in LIP2(A) (multiple LIP2 copy integrant)-overexpressing strains, which secreted 100 times more activity than the wild type, demonstrating that XPR6 maturation was not limiting. No extracellular lipase activity was detected with the lip2 knockout (KO) strain, strongly suggesting that extracellular lipase activity results from expression of the LIP2 gene. Nevertheless, the lip2 KO strain is still able to grow on triglycerides, suggesting an alternative pathway for triglyceride utilization in Y. lipolytica.  相似文献   

11.
This work investigated the effects of monopropylene glycol, protease inhibitor, and gamma irradiation on Yarrowia lipolytica lipase stability during storage. Enzyme liquid stabilization was achieved by addition of monopropylene glycol (MPG) at respective concentrations of 50, 75, and 90%, the protease inhibitors (P2714 and P8215) at 0.1%, and the gamma irradiation with 10kGy, 15kGy, and 25kGy doses. The results showed that monopropylene glycol limited the microorganism growth and decreased the enzymatic activity at high concentration (up to 50%), at two temperatures (20 and 4 degrees C). Enzyme stored at 20 degrees C lost its activity by 80% after two months. This loss was attributed to the protease's effect. At this temperature, the protease's activities have been limited by the specific inhibitors. The gamma irradiations improve microbial safety of liquid enzyme.  相似文献   

12.
The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica.  相似文献   

13.
Summary The role of electrical properties of interfaces upon the activity of free and immobilised Yarrowia lipolytica lipase has been investigated. Sodium taurocholate and Sedipur 400, an anionic polyacrylamide, enhance the negative character of the fatty droplets of substrate and tend to improve the lipolytic activity while the cationic polyacrylamide (Sedipur 900) has opposite effects. Ca2+ which reduces the fatty droplets charge as Sedipur 900, is however a good activator of the enzyme. The role of electrical properties on the optimum pH of the immobilised enzyme is clearer. Immobilisation of the lipase on a positively charged support shifts its optimum pH to acidic pH by repulsion towards H+ ions around the support.  相似文献   

14.
Yarrowia lipolytica lipase has been assumed to be a good candidate for the treatment of fat malabsorption in patients with pancreatic insufficiency. Nevertheless, no systematic studies on its stability under physiological conditions pertaining to the human GI (gastrointestinal) tract have been published. Stability of various Y. lipolytica lipase powder formulations at various physiological pH values as well as the effect of digestive proteases and bile salts on enzyme activity were investigated. Results were compared with those obtained from another competing fungal lipase sourced from Candida rugosa. Among the studied formulations, Y. lipolytica lipase stabilized with gum arabic and skimmed milk powder was the most promising powder formulation. Under acidic conditions (pH 3-5), this formulation showed higher stability than those observed with the other Y. lipolytica lipase formulations and C. rugosa lipase. In addition, in the presence of gum arabic and skimmed milk powder as additives, Y. lipolytica lipase exhibited markedly higher resistance to pepsin, trypsin and chymotrypsin actions. Resistance to proteolytic degradation by digestive proteases was also by far higher than that observed with C. rugosa lipase. Similar behaviour was, however, observed when these two fungal lipases were incubated with increased concentrations of bile salts. Residual lipase activity of both fungal lipases showed a slight decrease in NaTDC (sodium taurodeoxycholate) concentration above 4 mM. Consequently, Y. lipolytica lipase formulated with gum arabic and milk powder seemed to have great potential for use as a therapeutic tool for patients with pancreatic insufficiency.  相似文献   

15.
The gene encoding Rhizopus oryzae lipase (ROL) was expressed in the non-conventional yeast Yarrowia lipolytica under the control of the strong inducible XPR2 gene promoter. The effects of three different preprosequence variants were examined: a preprosequence of the Y. lipolytica alkaline extracellular protease (AEP) encoded by XPR2, the native preprosequence of ROL, and a hybrid variant of the presequence of AEP and the prosequence of ROL. Lipase production was highest (7.6 U/mL) with the hybrid prepropeptide. The recombinant protein was purified by ion-exchange chromatography. The ROL included 28 amino acids of the C-terminal region of the prosequence, indicating that proteolytic cleavage occurred below the KR site through the activity of the Kex2-like endoprotease. The optimum temperature for recombinant lipase activity was between 30 and 40 °C, and the optimum pH was 7.5. The enzyme was shown not to be glycosylated. Furthermore, recombinant ROL exhibited greater thermostability than previously reported, with the enzyme retaining 64% of its hydrolytic activity after 30 min of incubation at 55 °C.  相似文献   

16.
Extensive perexisome proliferation during growth on oleic acid, combined with the availability of excellent genetic tools, makes the dimorphic yeast, Yarrowia lipolytica, a powerful model system to study the molecular mechanisms involved in peroxisome biogenesis. A combined genetic, biochemical, and morphological approach has revealed that the endoplasmic reticulum (ER) plays an essential role in the assembly of functional peroxisomes in this yeast. The trafficking of some membrane proteins to the peroxisomes occurs via the ER, results in their glyco-sylation in the ER lumen, does not involve transit through the Golgi, and requires the products of the SEC238, SRP54, PEX1, and PEX6 genes. The authors' data suggest a model for protein import into peroxisomes via two subpopulations of ER-derived vesicles that are distinct from secretory vesicles. A kinetic analysis of the trafficking of peroxisomal proteins in vivo has demonstrated that membrane and matrix proteins are initially targeted to multiple vesicular precursors that represent intermediates in the assembly pathway of peroxisomes. The authors have also recently identified a novel cytosolic chaperone, Pex20p, that assists in the oligomerization of thiolase in the cytosol and promotes its targeting to the peroxisome. These data provide the first evidence that a chaperone-assisted folding and oligomerization of thiolase in the cytosol is required for the import of this protein into the peroxisomal matrix.  相似文献   

17.
The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene ( LIP2 ) was monitored using a LIP2 -β-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.  相似文献   

18.
Lipase location in Yarrowia lipolytica cells   总被引:1,自引:0,他引:1  
Lipase production by Yarrowia lipolytica was growth associated and, at the beginning of cultivation, it was mainly cell-bound. Lipase release into the culture medium started when about 50% of the carbon source (olive oil or glucose) was consumed reaching its maximum concentration in the late stationary phase.  相似文献   

19.
The production, purification and characterization of cold active lipases by Yarrowia lipolytica NCIM 3639 is described. The study presents a new finding of production of cell bound and extracellular lipase activities depending upon the substrate used for growth. The strain produced cell bound and extracellular lipase activity when grown on olive oil and Tween 80, respectively. The organism grew profusely at 20 °C and at initial pH of 5.5, producing maximum extracellular lipase. The purified lipase has a molecular mass of 400 kDa having 20 subunits forming a multimeric native protein. Further the enzyme displayed an optimum pH of 5.0 and optimum temperature of 25 °C. Peptide mass finger printing reveled that some peptides showed homologues sequence (42%) to Yarrowia lipolytica LIP8p. The studies on hydrolysis of racemic lavandulyl acetate revealed that extracellular and cell bound lipases show preference over the opposite antipodes of irregular monoterpene, lavandulyl acetate.  相似文献   

20.
Yarrowia lipolytica is an ascomycete with biotechnological potential. In common media, the fungus grows as a mixture of yeast-like and short mycelial cells. The environmental factors that affect dimorphism in the wild-type strain, W29, and its auxotrophic derivative, PO1a, were analyzed. In both strains, pH was the most important factor regulating the dimorphic transition. Mycelium formation was maximal at pH near neutrality and decreased as pH was lowered to become almost null at pH 3. Carbon and nitrogen sources, namely glucose and ammonium, were also important for mycelium formation; and their effect was antagonized by some alternative carbon and nitrogen sources. Citrate was an important positive effector of mycelium growth. Anaerobic stress induced formation of mycelial cells. The importance of the protein kinase A pathway was suggested by the inhibition of mycelium growth by cAMP. We propose that the interplay of these factors regulates the adaptation of the fungus, to better exploit its natural ecological niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号