首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various immobilized metal ions affinity membranes (IMAMs) were prepared from the regenerated cellulose membrane (RC membrane) and chelated with various metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The D-hydantoin-hydrolyzing enzyme (DHTase) harboring a poly-His tagged residue was used as a model protein to be immobilized on the prepared IMAMs through the direct metal–protein interaction forces. The adsorption isotherm and the kinetic parameters Vmax, Km,app of DHTase on IMAMs were studied. The cobalt ions chelated IMAM (Co-IMAM) was found to yield the highest specific activity of DHTase. Under the immobilization condition, the cobalt ion chelated amount was 161.4 ± 4.7 μmol/disk with a DHTase activity of 4.1 ± 0.1 U/disk. As compared to the free DHTase, the immobilized DHTase membrane could achieve a broader pH tolerance and higher thermal stability. In addition, 98% of the residual activity could be retained for 7-times repeated use. Only little activity loss was observed within 36-day storage at 4 °C. This is the first report concerning about using cobalt ion as the effective chelated metal ion for simultaneous purification and immobilization operation.  相似文献   

2.
This study describes an efficient adsorbent consisting of magnetic Fe3O4 and gellan gum, which couples magnetic separation with ionic exchange for heavy metal removal. Adsorption kinetics analysis showed that the adsorption capacities were in an order of Pb2+ > Cr3+ > Mn2+. Different experimental parameters studies indicated that adsorbent dosage, initial metal concentration, temperature and initial pH played important roles in adsorption process. Additionally, the Freundlich model gave a better fit to the experimental data than the Langmuir model. Chemical analysis of calcium ions released into the bulk solutions demonstrated that carboxyl group is critical for binding Pb2+, Mn2+ and Cr3+. Furthermore, a high desorption efficiency was obtained by sodium citrate.  相似文献   

3.
Immobilized metal ion affinity chromatography (IMAC) in expanded bed mode is used for purifying recombinant green fluorescent protein (GFP) overexpressed in Escherichia coli. The purification is carried out on two different matrices, i.e. Ni2+ Streamline™ and Ni2+ cross-linked alginate beads. The binding isotherms to both IMAC media followed the Langmuir model. The maximum binding capacity (qmax) of Ni2+ Streamline™ and Ni2+ cross-linked alginate for the GFP was 1,42,860 FU ml−1 and 18,000 FU ml−1, respectively. The expanded bed column chromatography using Ni2+ Streamline™ gave 2.7-fold purification with 89% of GFP recovery, while Ni2+ alginate gave 3.1-fold purification with 91% of GFP recovery. SDS-PAGE of purified GFP in both cases showed single band. The results obtained in the expanded bed chromatography are compared with those obtained in packed bed chromatography.  相似文献   

4.
This work describes the preparation of new chelating materials derived from cellulose and sugarcane bagasse for adsorption of Cu2+, Cd2+, and Pb2+ ions from aqueous solutions. The first part involved the mercerization treatment of cellulose and sugarcane bagasse with NaOH 5 mol/L. Non- and mercerized cellulose and sugarcane bagasse were then reacted with ethylenediaminetetraacetic dianhydride (EDTAD) in order to prepare different chelating materials. These materials were characterized by mass percent gain, X-ray diffraction, FTIR, and elemental analysis. The second part consisted of evaluating the adsorption capacity of these modified materials for Cu2+, Cd2+, and Pb2+ ions from aqueous single metal solutions, whose concentration was determined by atomic absorption spectroscopy. These materials showed maximum adsorption capacities for Cu2+, Cd2+, and Pb2+ ions ranging from 38.8 to 92.6 mg/g, 87.7 to 149.0 mg/g, and 192.0 to 333.0 mg/g, respectively. The modified mercerized materials showed larger maximum adsorption capacities than modified non-mercerized materials.  相似文献   

5.
《Process Biochemistry》2014,49(5):850-857
Various types of protein-rich biomass were examined as selective and environment-friendly adsorbents for precious metal ions. In the presence of base metal ions, Au3+, Pd2+ and Pt4+ ions were selectively adsorbed to samples of protein-rich biomass. Among the biomass samples tested, egg-shell membrane exhibited the highest adsorption ability and had high selectivity for Au, Pd and Pt ions. The maximum adsorption amount of Au, Pd and Pt ions to egg-shell membrane was approximately 250, 110 and 50 mg/g, respectively, in the presence of 0.1 M HCl. Microscopic observations and metal-ion desorption studies suggested that the precious metal ions were adsorbed and a portion of them was reduced to form metal nanoparticles on the egg-shell membrane, leading to high adsorption ratios. Investigations using glycoproteins indicated the importance of sugar chains in the adsorption of Au ions to the egg-shell membrane. Successful recovery of Au, Pd and Pt ions from industrial waste solutions was also demonstrated using egg-shell membrane. Biomass sheets (1 mm thick) made from egg-shell membrane also exhibited adsorption abilities for precious metal ions.  相似文献   

6.
By the introduction of Ag+, the molecular imprinting technology and photocatalysis technology were associated with each other and the Ag+-imprinted biosorbent (Ag-IB) was prepared. Ag-IB could first adsorb Ag+ and then degraded Methyl Orange (MO). Firstly the influences of the ionic strength and pH value in solution on adsorption capacity for Ag+ were studied, and then the effects of Ag+ adsorption capacity on degradability for MO were investigated. The maximal degradation ratio of MO reached over 93% at Ag+ adsorption capacity of 78.0 mg/g after 5.0 h. In contrast to MO, Methylene Blue (MB) and Sunset Yellow (SY) were studied and the degradation ratios could be about 70% and 98% at Ag+ adsorption capacity of 36.9 mg/g, respectively. And XPS analysis showed that Ag+ was reduced to Ag on Ag-IB surface. Furthermore, the mechanism for photocatalytic degradation of MO dye was primarily researched.  相似文献   

7.
A modified biomass of baker's yeast was prepared by grafting poly(amic acid), which was obtained via reaction of pyromellitic dianhydride (PMDA) and thiourea, onto the biomass surface at 50 °C for 4 h. This method was simpler than other reported chemical grafting methods. The presence of poly(amic acid) on the biomass surface was verified by FTIR, X-ray photoelectron spectroscopy (XPS) and microscope analyses, and the amount of carboxylate and amide groups in the biomass surface were found to be 1.36 and 0.7 mmol g−1 through potentiometric titration. Compared with the pristine biomass, the adsorption capacity of the modified biomass increased 15- and 11-fold for Cd2+ and Pb2+, respectively. According to the Langmuir equation, the maximum uptake capacities (qm) for lead and cadmium were 210.5 and 95.2 mg g−1, respectively. The kinetics for cadmium and lead adsorption followed the pseudo-second-order kinetics. FTIR and XPS demonstrated that carboxyl, amide, and hydroxyl groups were involved in the adsorption of lead and cadmium, and the adsorption mechanism for the two metal ions included ion exchange, electrostatic interaction and complexation.  相似文献   

8.
This study describes the preparation of two new chelating materials derived from succinylated mercerized cellulose (cell 1). Cell 1 was activated through two different methods by using diisopropylcarbodiimide and acetic anhydride (to form an internal anhydride) and reacted with triethylenetetramine in order to obtain cell 2 and 4. New modified celluloses were characterized by mass percent gain, concentration of amine functions, elemental analysis, and infrared spectroscopy. Cell 2 and 4 showed degrees of amination of 2.8 and 2.3 mmol/g and nitrogen content of 6.07% and 4.61%, respectively. The capacity of cell 2 and 4 to adsorb Cu2+, Cd2+, and Pb2+ ions from single aqueous solutions were examined. The effect of contact time, pH, and initial concentration of metal ions on the metal ions uptake was also investigated. Adsorption isotherms were well fitted by the Langmuir model. The maximum adsorption capacity of cell 2 and 4 were found to be 56.8 and 69.4 mg/g for Cu2+; 68.0 and 87.0 mg/g for Cd2+; and 147.1 and 192.3 mg/g for Pb2+, respectively.  相似文献   

9.
Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni2+ followed by 845 nmol Co2+, 828 nmol Cu2+ and 700 nmol Cd2+ mg?1 dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu2+ > Ni2+ > Co2+ > Cd2+. A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.  相似文献   

10.
Alginate/phosphorylated chitin (P-chitin) blend films were prepared by mixing of 2% of alginate and P-chitin in water and then cross-linked with 4% CaCl2 solution. The blended films were characterized by FT-IR. Then, the bioactivity of blend films was studied by biomimetic method in simulated body fluid solution (SBF) for 7, 14 and 21 days. After 7, 14 and 21 days and films were characterized by FT-IR and SEM studies. The SEM and FT-IR studies showed that the hydroxyapatite was formed on the surface of the blend films after 7, 14 and 21 days in the SBF solution. These studies confirmed that the alginate/P-chitin blend films are bioactive. Furthermore, the adsorption of Ni2+, Zn2+and Cu2+onto alginate/P-chitin blend films has been investigated. The parameters studied include the pH, contact time, and initial metal ion concentrations. The maximum adsorption capacity of alginate/P-chitin blend films for Ni2+, Zn2+and Cu2+ at pH 5.0 was found to be 5.67, 2.85 and 11.7 mg/g, respectively. These results suggest that alginate/P-chitin blend films-based technologies may be developed for water purification and metal ions separation and enrichment.  相似文献   

11.
In the first step of this investigation the toxicity of Ni2+, Cu2+, and Zn2+ ions to the emulsifier producing strain of Curvularia lunata was assessed. Among all the heavy metals studied, Ni2+ ions were found to be the most toxic to C. lunata, whereas Zn2+ ions exhibited the lowest toxicity. Moreover, only Ni2+, when used at sublethal concentration (5 mM) caused lysis of some hyphal tip cells after a short-term exposure (5 h). In the next step, emulsifier production, accumulation of heavy metals by mycelia and emulsifier as well as saturation of cellular fatty acids were examined in 48-h-old cultures where fungal growth intensity was not inhibited by heavy metals (in the presence of Ni2+, Cu2+, and Zn2+ ions at the initial concentration of 1, 5, and 15 mM, respectively) and in cultures where approximately 50% biomass inhibition occurred (in the presence of Ni2+, Cu2+, and Zn2+ ions at the initial concentrations of 3, 10, and 17.5 mM, respectively). Among all the heavy metals studied only Ni2+ ions did not induce emulsifier production. As compared with the control, only biomass treated with Ni2+ ions displayed an increase in total lipid saturation. This effect resulted mainly from the decrease in linoleic acid (18:2) content correlated with the increase in the amount of stearic acid (18:0). The possible mechanisms by which Ni2+ ions could alter the fatty acid profile of C. lunata and the protective role of the emulsifier were also discussed.  相似文献   

12.
Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg2+ is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca2+ (alone) only supports DNA binding. To investigate the role of Mg2+ in DNA cleavage by restriction endonucleases, we have studied the Mg2+ and Mn2+ concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg2+ and Mn2+ concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20 mM while no activity was detected in the presence of Mn2+ and in the presence of Ca2+ cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn2+ than in the presence of Mg2+ and can be activated by Ca2+. Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a Km value for pTrcHisB DNA of 6.15 nM and a Vmax of 1.79 × 10?2 nM min?1, while EhoI had a Km for pUC19 plasmid of 8.66 nM and a Vmax of 2 × 10?2 nM min?1.  相似文献   

13.
The studies on adsorption of hexavalent chromium were conducted by varying various parameters such as contact time, pH, amount of adsorbent, concentration of adsorbate and temperature. The kinetics of adsorption of Cr(VI) ion followed pseudo second order. Langmuir adsorption isotherm was employed in order to evaluate the optimum adsorption capacity of the adsorbent. The adsorption capacity was found to be pH dependant. Sawdust was found to be very effective and reached equilibrium in 3 h (adsorbate concentration 30 mg l−1). The rate constant has been calculated at 303, 308, 313 and 318 K and the activation energy (Ea) was calculated using the Arrhenius equation. Thermodynamic parameters such as standard Gibbs energy (ΔG°) and heat of adsorption (ΔHr) were calculated. The ΔG° and ΔHr values for Cr(VI) adsorption on the sawdust showed the process to be exothermic in nature. The percentage of adsorption increased with decrease in pH and showed maximum removal of Cr(VI) in the pH range 4.5–6.5 for an initial concentration of 5 mg l−1.  相似文献   

14.
Two dinuclear metal complexes, [Co2(bhmp)(MeCO2)2]ClO4 · 2H2O (1) and [Ni2(bhmp)(MeCO2)2]ClO4 · 2H2O (2), were synthesized with a dinucleating ligand, 2,6-bis[bis(2-hydroxyethyl)aminomethyl]-4-methylphenol [H(bhmp)]. Both complexes were easily soluble in water as well as in DMF. Electronic spectra for both complexes were measured in both solvents and analyzed using the angular overlap model (AOM). From the electronic spectra and molar conductance, both complexes were determined to exist as [M2(bhmp)(MeCO2)2]+ (M = CoII or NiII) in DMF, dissociating perchlorate ions. On the other hand, in water, it was concluded that the acetate ions were partially dissociated and each complex existed as a mixture of some dissociated species, such as [M2(bhmp)(MeCO2)(H2O)2]2+ and [M2(bhmp)(H2O)4]3+ (M = CoII or NiII). Such dissociation was also confirmed by precipitation of the dissociated species when NaBPh4 was added into an aqueous solution of the nickel complex.  相似文献   

15.
Cadmium is one of the most toxic substances found in aquatic ecosystems. This metal tends to accumulate in photosynthetic plants and fish and is transferred to humans causing many diseases. It has to be removed from our environment to reduce any health risks. Dry biomass of the microalga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of cadmium ions (Cd2+) from aqueous solutions. The effects of different levels of pH (3–9), biomass concentration (0.25–2 g), temperature (18–46 °C), metal concentration (40–200 mg/l) and contact time (30–120 min) were tested. Batch cultures were carried out in triplicate in an orbital shaker at 150 rpm. After centrifuging the biomass, the remaining levels of cadmium ions were measured in the supernatant by Atomic Absorption Spectrometer. Very high levels of removal, reaching up to 87.69% were obtained. The highest percentage of removal was reached at pH 8, 2 g of biosorbent, 26 °C, and 60 mg/l of cadmium concentration after 90 min of contact time. Langmuir and Freundlich isotherm models were applied to describe the adsorption isotherm of the metal ions by S. platensis. Langmuir model was found to be in better correlation with experimental data (R2 = 0.92). Results of this study indicated that S. platensis is a very good candidate for the removal of heavy metals from aquatic environments. The process is feasible, reliable and eco-friendly.  相似文献   

16.
《IRBM》2008,29(2-3):136-140
Alkaline phosphatase conductometric biosensors consisting of interdigitated gold electrodes and enzyme membranes have been used for assessment of heavy-metal ions in water. These analytes act as enzyme inhibitors. Enzyme residual activity has been measured in Tris-nitrate buffer without metal preincubation in the presence of Mg2+ ions as activator. The results indicate that the toxicity of the various metals tested toward immobilized phosphatase is ranged as follows: Cd2+ > Co2+ > Zn2+ > Ni2+ > Pb2+. Detection limits were about 0.5 ppm for Cd2+, 2 ppm for both Zn2+ and Co2+, 5 ppm for Ni2+ and 40 ppm for lead ions. In addition, the responses during 10 h were stable (RSD 4%) and a drift of about 7% per day was observed. The storage stability in buffer solution at 4 °C remained stable for more than one month.  相似文献   

17.
This research highlights the possibility of employing a fermentation industry waste (Corynebacterium glutamicum) for the removal of nickel(II) ions from aqueous solution. Furthermore, it necessitates the importance of detailed examinations on the possible differences in the biosorption performance, even for the same biomass, but from different origins. Two types of C. glutamicum, obtained from different industrial sources, were used in this study. With respect to nickel speciation and biosorption performance, pH 6 was identified as an optimal condition. Of the two types of C. glutamicum used, the biomass with excess negatively charged groups performed well in the binding of Ni2+ ions. To enhance the feasibility of using the biomass in column mode, as well as its reuse for multiple cycles, C. glutamicum was immobilized in a polysulfone matrix. Both the free and immobilized biomasses performed relatively well, with maximum experimental uptakes of 111.4 and 102.4 mg g−1, respectively. An up-flow packed column loaded with immobilized biomass was employed for the removal of Ni2+ ions. The column performed well in the biosorption of nickel(II), and exhibited a delayed and favorable breakthrough curve, with Ni2+ uptake and percentage removal of 48.1 mg g−1 biomass and 60.4%, respectively.  相似文献   

18.
The frustule of diatoms, through appropriate chemical modification, can be developed for a high adsorption level of recombinant proteins and viral nanoparticles. Field emission scanning electron microscopy (FE-SEM) analysis of clean frustules revealed a 3D loculate areolae structure (valvar phase porous pattern of the siliceous cell wall). Isocyanatopropyl triethoxysilane (IPS) and iminodiacetic acid (IDA) were used to immobilize Cu2+ ions (an average Cu2+ adsorption capacity about 190 μmol of Cu2+/ml of the Cu2+-coupled biosilica reached). FE-SEM, energy dispersion X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) were used to confirm the chemical modification of the Cu2+-coupled biosilica. Protein adsorption was confirmed with the detection of a recombinant (His)6-tagged green fluorescent protein binding using fluorescent microscopy. Infectious bursal disease virus VP2-441 subviral particles (SVPs) were found to bind to the Cu2+-coupled biosilica (approximately 3 × 10?9 mol of VP2-441 SVPs/ml of modified frustules), a level higher than the previously obtained 9 × 10?10 mol/ml for SVP binding using a commercial Ni–NTA resin. These give diatom frustules the potential to be developed into a material useful in viral nanoparticle purification systems or as a biosensor for the detection of viruses.  相似文献   

19.
A biosensor for trace metal ions based on horseradish peroxidase (HRP) immobilized on maize tassel-multiwalled carbon nanotube (MT-MWCNT) through electrostatic interactions is described herein. The biosensor was characterized using Fourier transform infrared (FTIR), UV–vis spectrometry, voltammetric and amperometric methods. The FTIR and UV–vis results inferred that HRP was not denatured during its immobilization on MT-MWCNT composite. The biosensing principle was based on the determination of the cathodic responses of the immobilized HRP to H2O2, before and after incubation in trace metal standard solutions. Under optimum conditions, the inhibition rates of trace metals were proportional to their concentrations in the range of 0.092–0.55 mg L−1, 0.068–2 mg L−1 for Pb2+ and Cu2+ respectively. The limits of detection were 2.5 μg L−1 for Pb2+ and 4.2 μg L−1 for Cu2+. Representative Dixon and Cornish-Bowden plots were used to deduce the mode of inhibition induced by the trace metal ions. The inhibition was reversible and mixed for both metal ions. Furthermore, the biosensor showed good stability, selectivity, repeatability and reproducibility.  相似文献   

20.
Carboxymethyl chitosan-graft-d-glucuronic acid (CMCS-g-d-GA) was prepared by grafting d-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-d-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-d-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+and Cu2+ ions onto CMCS-g-d-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-d-GA for Ni2+, Zn2+and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号