首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Loss-of-function mutations in TRPML1 (transient receptor potential mucolipin 1) cause the lysosomal storage disorder, mucolipidosis type IV (MLIV). Here, we report that flies lacking the TRPML1 homolog displayed incomplete autophagy and reduced viability during the pupal period-a phase when animals rely on autophagy for nutrients. We show that TRPML was required for fusion of amphisomes with lysosomes, and its absence led to accumulation of vesicles of significantly larger volume and higher luminal Ca(2+). We also found that trpml(1) mutant cells showed decreased TORC1 (target of rapamycin complex 1) signaling and a concomitant upregulation of autophagy induction. Both of these defects in the mutants were reversed by genetically activating TORC1 or by feeding the larvae a high-protein diet. The high-protein diet?also reduced the pupal lethality and the increased volume of acidic vesicles. Conversely, further inhibition of TORC1 activity by rapamycin exacerbated the mutant phenotypes. Finally, TORC1 exerted reciprocal control on TRPML function. A high-protein diet caused cortical localization of TRPML, and this effect was blocked by rapamycin. Our findings delineate the interrelationship between the TRPML and TORC1 pathways and raise the intriguing possibility that a high-protein diet might reduce the severity of MLIV.  相似文献   

2.
Cholangiocacinoma (CC) is a cancer disease with rising incidence. Notch signaling has been shown to be deregulated in many cancers. However, the role of this signaling pathway in the carcinogenesis of CC is still not fully explored. In this study, we investigated the effects of Notch inhibition by γ-secretase inhibitor IX (GSI IX) in cultured human CC cell lines and we established a transgenic mouse model with liver specific expression of the intracellular domain of Notch (Notch-ICD) and inactivation of tumor suppressor p53. GSI IX treatment effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. In vivo overexpression of Notch-ICD together with an inactivation of p53 significantly increased tumor burden and showed CC characteristics. Conclusion: Our study highlights the importance of Notch signaling in the tumorigenesis of CC and demonstrates that additional inactivation of p53 in vivo.  相似文献   

3.
4.
5.
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.  相似文献   

6.
Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to “clamp” the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmembrane clamp domains of Sss1p are essential for protein translocation. Our data reveal that the cytosolic domain is required for Sec61p interaction but that the transmembrane clamp domain is required to complete activation of the translocon after precursor targeting to Sec61p.  相似文献   

7.
Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.  相似文献   

8.

Background & Aims

Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH.

Methods

To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies.

Results

In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes.

Conclusions

TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.  相似文献   

9.
10.
The JNK family of MAPKs is involved in a large variety of physiological and pathological processes in brain development, such as neural survival, migration, and polarity as well as axon regeneration. However, whether JNK activation is involved in axon guidance remains unknown. Here, we provide evidence indicating the JNK pathway is required for Netrin signaling in the developing nervous system. Netrin-1 increased JNK1, not JNK2 or JNK3, activity in the presence of deleted in colorectal cancer (DCC) or Down syndrome cell adhesion molecule (DSCAM), and expression of both of them further enhanced Netrin-1-induced JNK1 activity in vitro. Inhibition of JNK signaling either by a JNK inhibitor, SP600125, or expression of a dominant negative form of MKK4, a JNK upstream activator, blocked Netrin-1-induced JNK1 activation in HEK293 cells. Netrin-1 increased endogenous JNK activity in primary neurons. Netrin-1-induced JNK activation was inhibited either by the JNK inhibitor or an anti-DCC function-blocking antibody. Combination of the anti-DCC function-blocking antibody with expression of DSCAM shRNA in primary neurons totally abolished Netrin-1-induced JNK activation, whereas knockdown of DSCAM partially inhibited the Netrin-1 effect. In the developing spinal cord, phospho-JNK was strongly expressed in commissural axons before and as they crossed the floor plate, and Netrin-1 stimulation dramatically increased the level of endogenous phospho-JNK in commissural axon growth cones. Inhibition of JNK signaling either by JNK1 RNA interference (RNAi) or the JNK inhibitor suppressed Netrin-1-induced neurite outgrowth and axon attraction. Knockdown of JNK1 in ovo caused defects in spinal cord commissural axon projection and pathfinding. Our study reveals that JNK1 is important in the coordination of DCC and DSCAM in Netrin-mediated attractive signaling.  相似文献   

11.
12.
13.
14.
TNF receptor–associated factors (TRAFs) are multifunctional adaptor proteins involved in temporal and spatial coordination of signals necessary for normal immune function. Here, we report that TRAF3, a TRAF family member with a key role in Toll-like and TNF family receptor signaling and suppressor of lymphomagenesis, is post-translationally modified by the small ubiquitin-related modifier (SUMO). Through yeast two-hybrid and co-immunoprecipitation assays we have identified Ubc9, the SUMO conjugating enzyme, as a novel TRAF3-interacting protein. We show that Ubc9-dependent SUMOylation of TRAF3 modulates optimal association with the CD40 receptor, thereby influencing TRAF3 degradation and non-canonical NF-κB activation upon CD40 triggering. Collectively, our findings describe a novel post-translational modification of a TRAF family member and reveal a link between SUMOylation and TRAF-mediated signal transduction.  相似文献   

15.
《Cell metabolism》2020,31(1):115-130.e6
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

16.
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.  相似文献   

17.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

18.
The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.  相似文献   

19.
The natural product embelin has been demonstrated to possess a wide range of therapeutic properties, however, the mechanisms by which it exerts anticancer effects are not yet clear. By monitoring the molecular changes associated during early apoptotic phase, we have identified the crucial role of oxidative stress induced MAP kinase signalling as a predominant mechanism for its anticancer effects. Treatment of A549 lung cancer cells with embelin resulted in the enhancement of phospho-p38 and phospho-JNK levels as early as 4h. Pretreatment of cells with specific inhibitors of p38 (PD169316) and JNK (SP600125) abrogated embelin-induced caspase-3 activation. Studies employing embelin in the presence or absence of specific MAP kinase inhibitors indicated that the observed changes in phosphorylation levels of p38, JNK and ERK 1/2 are solely due to embelin and not because of cross-talk between MAP kinases. Reactive oxygen species (ROS) play a crucial role in embelin induced alterations in MAP kinase phosphorylation and apoptosis as pretreatment of cells with FeTMPyP mitigated this effect. The observed changes are not due to the inhibitory effect of embelin on XIAP as cells treated with SMAC-N7-Ant peptide, a specific inhibitor of XIAP’s BIR3 domain did not mimic embelin induced apoptotic effects. The findings of the present study clearly indicate the crucial role of p38 and JNK pathways in embelin induced apoptosis and provide us with new clues for improving its therapeutic efficacy.  相似文献   

20.
Cells organize diverse types of specialized adhesion sites upon attachment to extracellular matrix (ECM) components. One of the physiological roles of such cell-ECM interactions is to initiate and regulate adhesion-mediated signal transduction responses. The association of cells with fibronectin fibrils has been shown to regulate the JNK and p38 signaling pathways. We tested whether tensin, a cytoskeletal component localized to both focal contacts and fibronectin-associated fibrillar adhesions, can induce these signaling pathways. We found that tensin overexpression resulted in activation of both the c-Jun amino-terminal kinase (JNK) and p38 pathways. Tensin-mediated JNK activation was independent of the activities of the small GTP binding proteins Rac and Cdc42, but did depend on SEK, a kinase involved in the JNK pathway. We suggest that tensin may directly activate the JNK and p38 pathways, acting downstream or independent of the activities of the small GTP binding proteins Rac and Cdc42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号