首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
LTR retrotransposons comprise a major component of the genomes of eukaryotes. On occasion, retrotransposon genes can be recruited by their hosts for diverse functions, a process formally referred to as co-option. However, a comprehensive picture of LTR retrotransposon gag gene co-option in eukaryotes is still lacking, with several documented cases exclusively involving Ty3/Gypsy retrotransposons in animals. Here, we use a phylogenomic approach to systemically unearth co-option of retrotransposon gag genes above the family level of taxonomy in 2,011 eukaryotes, namely co-option occurring during the deep evolution of eukaryotes. We identify a total of 14 independent gag gene co-option events across more than 740 eukaryote families, eight of which have not been reported previously. Among these retrotransposon gag gene co-option events, nine, four, and one involve gag genes of Ty3/Gypsy, Ty1/Copia, and Bel-Pao retrotransposons, respectively. Seven, four, and three co-option events occurred in animals, plants, and fungi, respectively. Interestingly, two co-option events took place in the early evolution of angiosperms. Both selective pressure and gene expression analyses further support that these co-opted gag genes might perform diverse cellular functions in their hosts, and several co-opted gag genes might be subject to positive selection. Taken together, our results provide a comprehensive picture of LTR retrotransposon gag gene co-option events that occurred during the deep evolution of eukaryotes and suggest paucity of LTR retrotransposon gag gene co-option during the deep evolution of eukaryotes.  相似文献   

5.
6.
7.
本研究根据Ty1-copia类反转录转座子反转录酶的保守区设计简并引物,通过PCR扩增,从裸燕麦(Avena nuda L.)品种‘品燕1号’基因组中分离获得23条Ty1-copia类反转录转座子序列,并对序列特征、系统发育关系及其转录活性进行分析。结果显示,23条Ty1-copia类反转录转座子存在较高的异质性,序列间的一致性为45%~98%,存在插入、移码和终止密码突变,但频率不高;系统发育分析结果表明,燕麦Ty1-copia类反转录转座子在进化过程中主要为垂直传递。本研究通过检索燕麦基因表达数据库,发现了5个有转录活性的Ty1-copia类反转录转座子。  相似文献   

8.
9.
The recent completion of the sequencing of the Saccharomyces cerevisiae genome provides a unique opportunity to analyze the evolutionary relationships existing among the entire complement of retrotransposons residing within a single genome. In this article we report the results of such an analysis of two closely related families of yeast long terminal repeat (LTR) retrotransposons, Ty1 and Ty2. In our study, we analyzed the molecular variation existing among the 32 Ty1 and 13 Ty2 elements present within the S. cerevisiae genome recently sequenced within the context of the yeast genome project. Our results indicate that while the Ty1 family is most likely ancestral to Ty2 elements, both families of elements are relatively recent components of the S. cerevisiae genome. Our results also indicate that both families of elements have been subject to purifying selection within their protein coding regions. Finally, and perhaps most interestingly, our results indicate that a relatively recent recombination event has occurred between Ty2 and a subclass of Ty1 elements involving the LTR regulatory region. We discuss the possible biological significance of these findings and, in particular, how they contribute to a better overall understanding of LTR retrotransposon evolution. Received: 30 September 1997 / Accepted: 3 February 1998  相似文献   

10.
11.
Summary We have used the polymerase chain reaction (PCR) to isolate a sequence characteristic of aTy1-copia group retrotransposon from the genome of the herring (Clupea harengus). This is the firstTy1-copia group retrotransposon sequence described in a vertebrate. Phylogenetic comparison of this sequence with other members of this group of retrotransposons shows that it resembles more closely some Tyl-copia group members fromDrosophila melanogaster than other group members in plants and fungi. These observations provide further evidence that theTy1-copia group LTR retrotransposons span many of the major eukaryote species boundaries, suggesting that horizontal transmission between different species has played a role in the evolution of this retrotransposon group.  相似文献   

12.
13.
14.
15.
16.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

17.
18.
Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag–GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号