首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

2.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

3.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

4.
The objective of this work was to compare the properties of free and immobilized β-galactosidase (Aspergillus oryzae), entrapped in alginate–gelatin beads and cross-linked with glutaraldehyde. The free and immobilized forms of the enzyme showed no decrease in enzyme activity when incubated in buffer solutions in pH ranges of 4.5–7.0. The kinetics of lactose hydrolysis by the free and immobilized enzymes were studied at maximum substrate concentrations of 90 g/L and 140 g/L, respectively, a temperature of 35 °C and a pH of 4.5. The Michaelis–Menten model with competitive inhibition by galactose fit the experimental results for both forms. The Km and Vm values of the free enzyme were 52.13 ± 2.8 mM and 2.56 ± 0.3 gglucose/L min mgenzyme, respectively, and were 60.30 ± 3.3 mM and 1032.07 ± 51.6 glactose/min m3catalyst, respectively, for the immobilized form. The maximum enzymatic activity of the soluble form of β-galactosidase was obtained at pH 4.5 and 55 °C. Alternatively, the immobilized form was most active at pH 5.0 at 60 °C. The free and immobilized enzymes presented activation energies of 6.90 ± 0.5 kcal/mol and 7.7 ± 0.7 kcal/mol, respectively, which suggested that the immobilized enzyme possessed a lower resistance to substrate transfer.  相似文献   

5.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

6.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

7.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

8.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

9.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

10.
(S)-(+)-2-Chlorophenylglycine 1 is an important intermediate in the synthesis of Clopidogrel. A recirculating packed bed reactor (RPBR) was constructed for efficient production of (S)-1 by kinetic resolution of racemic N-phenylacetyl-2- chlorophenylglycine 2 using immobilized penicillin G acylase (PGA). The immobilized PGA exhibited maximum activity at 50 °C and pH 8.0 with (R,S)-2 as substrate. The kinetic constants (Km and vmax) of immobilized PGA were calculated to be 20.61 mM and 83.2 mM/min/g, respectively. The substrate displayed inhibitory effect on immobilized PGA with inhibition constant of 221.23 mM. The immobilized PGA showed a strict enantiospecificity for substrate at different temperature, pH and substrate concentration examined. The performance and productivity of RPBR were evaluated by several critical parameters, including immobilized PGA load, substrate feeding rate, height to diameter ratio and so on. The kinetic resolution process shows higher initial reaction rate and conversion by recycling 100 mL of substrate solution (80 mM) through RPBRs packed with 6.0 g immobilized PGA with a feeding rate of 1.5 mL/min while the H/D ratio was 4.0. The immobilized PGA-catalyzed kinetic resolution of (R,S)-2 was successfully operated in the RPBR for 60 batches, with an average productivity of 1.2 g/L/h for (S)-1 in high optical purity (>97% enantiomeric excess) in semi-continuous operation. The residual (R)-2 can be easily racemized and then used as substrate.  相似文献   

11.
A method is described for covalent immobilization of uricase onto polyethylene terephthalate (PET) membrane with a conjugation yield of 4.44 μg/cm2 and 66.6% retention of initial activity of free enzyme. The enzyme exhibited an increase in optimum pH from pH 7.0 to 8.5 and Km for uric acid from 0.075 mM to 0.13 mM but slight decrease in temp. for maximum activity from 37 °C to 35 °C after immobilization. A colorimetric method for determination of serum uric acid was developed using immobilized uricase, which is based on measurement of H2O2 by a color reaction consisting of 3,5-dichlorobenzene sulphonic acid (DHBS), 4-aminoantipyrine and peroxidase as chromogenic system. Minimum detection limit of the method was 0.05 mM. Analytical recovery of added uric acid (5 mg/dl and 10 mg/dl) was 94.3% and 89.8%, respectively. Within and between batch coefficient of variation (CV) were <3.2% and <4.3%, respectively. A good correlation (r = 0.98) was found between uric acid values by standard enzymic colorimetric method and the present method. The immobilized uricase was reused 100 times during the span of 60 days without any considerable loss of activity, when stored in reaction buffer at 4 °C. The support chosen for the present study was biocompatible, antimicrobial, inert, impact resistant, light weight and had good shelf life.  相似文献   

12.
Laccase from Trametes versicolor was immobilized on Amberlite IR-120 H beads. Maximum immobilization obtained was 78.7% at pH = 4.5 and temperature T = 45 °C. Kinetic parameters, Km and Vmax values, were determined respectively as 0.051 mM and 2.77 × 10?2 mM/s for free and 4.70 mM and 5.27 × 10?3 mM/s for immobilized laccase. The Amberlite–laccase system showed a 30% residual activity after 7 cycles. On the other hand, the loss of activity for free laccase after 7 days of storage at 4 °C was 18.5% in comparison to Amberlite–laccase system with a loss of 1.4%, during the same period. Improved operational, thermal and storage stabilities of the immobilized laccase were obtained compared to the free counterpart. Therefore, the use of low-cost matrices, like Amberlite for enzyme immobilization represents a promising product for enzymatic industrial applications.  相似文献   

13.
Temperature and pH play an important role in the stability of phycocyanin, a natural blue colorant. Systematic investigations showed the maximum stability of phycocyanin was in the pH range 5.5–6.0. Incubation at temperatures between 47 and 64 °C caused the concentration (CR) and half-life of phycocyanin in solution to decrease rapidly. The CR value remained at approximately 50% after incubating for 30 min at 59 °C. After heating at 60 °C for 15 min, the CR value of phycocyanin at pH 7.0 was maintained at around 62–70% when 20–40% glucose or sucrose was added, and the half-life increased from 19 min to 30–44 min. 2.5% sodium chloride was found to be an effective preservative for phycocyanin at pH 7.0 as a CR value of 76% was maintained and the half-life of 67 min was increased.  相似文献   

14.
An investigation was conducted on the production of β-galactosidase (β-gal) by different strains of Kluyveromyces, using lactose as a carbon source. The maximum enzymatic activity of 3.8 ± 0.2 U/mL was achieved by using Kluyveromyces lactis strain NRRL Y1564 after 28 h of fermentation at 180 rpm and 30 °C. β-gal was then immobilized onto chitosan and characterized based on its optimal operation pH and temperature, its thermal stability and its kinetic parameters (Km and Vmax) using o-nitrophenyl β-d-galactopyranoside as substrate. The optimal pH for soluble β-gal activity was found to be 6.5 while the optimal pH for immobilized β-gal activity was found to be 7.0, while the optimal operating temperatures were 50 °C and 37 °C, respectively. At 50 °C, the immobilized enzyme showed an increased thermal stability, being 8 times more stable than the soluble enzyme. The immobilized enzyme was reused for 10 cycles, showing stability since it retained more than 70% of its initial activity. The immobilized enzyme retained 100% of its initial activity when it was stored at 4 °C and pH 7.0 for 93 days. The soluble β-gal lost 9.4% of its initial activity when it was stored at the same conditions.  相似文献   

15.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

16.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

17.
In this work, the hydrolysis kinetics of lactose by Aspergillus oryzae β-galactosidase was studied using the ionic exchange resin Duolite A568 as a carrier. The enzyme was immobilized using a β-galactosidase concentration of 16 g/L in pH 4.5 acetate buffer and an immobilization time of 12 h at 25 ± 0.5 °C. Next, the immobilized β-galactosidase was crosslinked using glutaraldehyde concentration of 3.5 g/L for 1.5 h. The influence of lactose concentration was studied for a range of 5–140 g/L, and the Michaelis–Menten model was fitted well to the experimental results with Vm and Km values of 0.71 U and 35.30 mM, respectively. The influence of the product galactose as an inhibitor on the hydrolysis reaction was studied. The model that was best fitted to the experimental results was the competitive inhibition by galactose with Vm, Km and Ki values of 0.77 U, 35.30 mM and 27.44 mM, respectively. The influence of temperature on the enzymatic activity of the immobilized enzyme was studied in the range of 10–80 °C, in which the temperature of the maximum activity was 60 °C, with an activation energy of 5.32 kcal/mol of lactose, using an initial concentration of lactose of 50 g/L in a pH 4.5 sodium acetate buffer solution. The thermal stability of the immobilized biocatalyst was determined to be in the range 55–65 °C. The first-order model described well the kinetics of thermal deactivation for all the temperatures studied. The activation energy of thermal deactivation from immobilized biocatalyst was 66.48 kcal/mol with a half-life of 8.9 h at 55 °C.  相似文献   

18.
《Process Biochemistry》2010,45(2):259-263
The para-nitrobenzyl esterase (PNBE), which was encoded by pnbA gene from Bacillus subtilis, was immobilized on amino-functionalized magnetic supports as cross-linked enzyme aggregates (CLEA). The maximum amount of PNBE-CLEA immobilized on the magnetic beads using glutaraldehyde as a coupling agent was 31.4 mg/g of beads with a 78% activity recovery after the immobilization. The performance of immobilized PNBE-CLEA was evaluated under various conditions. As compared to its free form, the optimal pH and temperature of PNBE-CLEA were 1 unit (pH 8.0) and 5 °C higher (45 °C), respectively. Under different temperature settings, the residual enzyme activity was highest for the PNBE-CLEA, followed by covalently fixed PNBE without further cross-linking and the free PNBE. During 40 days of storage pried, the PNBE-CLEA maintained more than 90% of its initial activity while the free PNBE maintained about 60% under the same condition. PNBE-CLEA also retained more than 80% activity after 30 reuses with 30 min of each reaction time, indicating stable reusability under aqueous medium.  相似文献   

19.
This study deals with the surface functionalization of mesoporous activated carbon, using ethylenediamine and glutaraldehyde to facilitate the strong immobilization of acidic lipase (AL) onto MAC. The AL was produced from Pseudomonas gessardii by using slaughterhouse lipid waste as the substrate. The AL immobilized on functionalized mesoporous activated carbon (ALFMAC) was applied for the hydrolysis of waste cooked oil (WCO). The optimum conditions for the immobilization of AL onto functionalized mesoporous activated carbon (FMAC) were 90 min; pH 3.5; and 35 °C; which resulted at the maximum immobilization of 5440 U/g of FMAC (3.693 mg of AL/g of FMAC or the yield 2.7% or the expressed activity 103.7% or the activity per unit area of FMAC 1.08 mg of AL/m2). The ALFMAC showed better thermal and storage stabilities than the free AL. The ALFMAC retained a 98% and a 92% initial activity at 40 °C and 50 °C, respectively, while the AL showed the thermal stability (residual activities) 65% and 38%, respectively. The storage stability of ALFMAC at 4 °C showed 100% initial activity up to 15 days from the initial day of the storage, whereas AL showed only 88% initial activity up to 15 days. The FMAC and ALFMAC were characterized by using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) analysis. The Km values of the ALFMAC and AL were 0.112 mM and 0.411 mM, respectively. The vmax values of the ALFMAC and AL were 1.26 mM/min and 0.53 mM/min, respectively. Immobilization of AL onto FMAC obeyed the Freundlich and Redlich–Peterson isotherm models. The non-linear models of pseudo first, and second order, intra-particle diffusion, Bangham, and Boyd plot were also performed to understand the dynamic mechanism of immobilization. ALFMAC showed a 100% hydrolysis of WCO up to 21 cycles of reuse, and 60% up to 45 cycles. The hydrolysis of WCO was confirmed by using FT-IR spectra.  相似文献   

20.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号