首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor.  相似文献   

2.

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7–5.1 in the influent. Simultaneous nitrification–denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6–97.4% and 34.4–60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4–6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12–29.33%), Burkholderiales (2.15–21.38%), and Sphingobacteriales (2.92–11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.

  相似文献   

3.
The efficiency of nitrification in a fixed bed reactor was compared to that found in an activated sludge reactor to determine their sensitivity to changing loads and lower temperatures. Two structurally identical lab‐scale systems, using the anaerobic/anoxic/aerobic (AAO) process to remove nitrogen and phosphorus simultaneously, were operated in parallel with secondary clarifiers and sludge return. The first aerobic system was operated as an activated sludge reactor, the second system as a fixed bed reactor. The aerobic fixed bed reactor was filled with porous ceramic materials for the immobilisation of predominantly nitrifying bacteria. The removal efficiencies of 99 % NH4+‐N, 90 % DOC, and 98 % PO43–‐P for normal loads of 0.11 g/L d DOC, 0.06 g/L d NH4+‐N, and 0.0054 g/L d PO43–‐P were achieved for both systems. However, the system with an aerobic fixed bed reactor was characterised by the following advantages over the system with an activated sludge reactor: a shorter time to reach almost complete nitrification, a higher nitrification rate at higher loads of NH4+‐N and a lower sensitivity of nitrification at lower temperatures down to 12 °C.  相似文献   

4.
Performance and Microbial Structure of a Combined Biofilm Reactor   总被引:2,自引:0,他引:2  
A novel combined biofilm reactor was established and applied as a single treatment unit for carbon and nitrogen removal of wastewater. The nitrogen removal performance of the reactor at different levels of organic carbon (COD) loading was investigated when the influent total nitrogen (TN) loading was 0.74 g TN/m2 day. Continuous experimental results demonstrated that 80% nitrogen was eliminated when the influent COD loading ranged between 2.06 g and 3.92 g COD/m2 day. Microbial composition in the reactor was analyzed using fluorescent in situ hybridization (FISH) and conventional batch tests. The relative abundance of ammonia-oxidizing bacteria in the aerobic zone of the reactor measured by FISH was consistent with the result from conventional batch tests.  相似文献   

5.
Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (± 0.19) kg-N m−3 d−1 than the reactor initiated as the partial nitrifying reactor (0.23 (± 0.16) kg-N m−3 d−1). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor.  相似文献   

6.
The simultaneous partial nitrification, anammox and denitrification (SNAD) process for treating domestic wastewater was investigated in a sequencing batch reactor (SBR). The SBR was operated with air flow rate of 500 L h?1 at 30 °C. Domestic wastewater was used as influent and Kaldnes rings were used as biomass carriers. In the beginning, long aeration condition was implemented to cultivate nitrification biofilm. Afterwards, intermittent aerobic condition was conducted during the cycle operation. The influent organic matter loading rate was improved by reducing the aeration and mixing times. Consequently, when the SNAD biofilm reactor was fed with the organic matter loading rate of 0.77 (kg COD m?3 d?1), the bio-bubbles appeared in the reactor and the total inorganic nitrogen (TIN) removal efficiency decreased. After the organic matter loading rate decreased to 0.67 (kg COD m?3 d?1), the reactor showed excellent nitrogen removal performance. The TIN removal efficiency varied between 80 and 90 %, and the average TIN removal loading rate was 0.22 (kg TIN m?3 d?1). Additionally, the scanning electron microscope (SEM) observation confirmed that the anammox bacteria located in the inner part of the carriers. Finally, the microbial community analysis of 16S rRNA gene cloning revealed that the anammox bacteria on the carriers consisted of three main genuses: Candidatus Brocadia sp., Candidatus Brocadia caroliniensis and Candidatus Brocadia fulgida.  相似文献   

7.
Phosphorus and nitrogen are the important eutrophication nutrients. They are removed in the anoxic/oxic reactor through simultaneous precipitation and biological nitrogen removal. The effect of alum a commonly used simultaneous precipitant on biological nitrification and denitrification are investigated in the present study. Simultaneous removal of phosphorus was carried out using the coagulant alum Al2(SO4)3·14H2O at 2.2 mol ratio. Before the start of simultaneous precipitation the nitrification rate of the A/O reactor was found to be 0.05 g N-NH4 +/g VSS/d. It starts to decrease with increase in coagulant dosage. The nitrification rate for alum dosage 97.13 mg/L was 0.38 g N- NH4 +/g VSS/d. There was no accumulation of nitrate in anoxic tank. The nitrogen removal efficiency of the reactor was affected and it fell from 88 to 78%. There was a slight decrease in effluent COD from 16∼20 mg/L to 8∼12 mg/L after the introduction of simultaneous precipitation into the reactor. The usage of alum as a simultaneous precipitant in the anoxic/oxic reactor was limited due to its inhibition on nitrification. Alum did not have any affect over denitrification process.  相似文献   

8.
A continuous-flow anaerobic–anoxic (A2) activated sludge system was operated for efficient enhanced biological phosphorus removal (EBPR). Because of the system configuration with no aeration zones, phosphorus (P) uptake takes place solely under anoxic conditions with simultaneous denitrification. Basic operating conditions, namely biomass concentration, influent carbon to phosphorus ratio and anaerobic retention time were chosen as variables in order to assess their impact on the system performance. The experimental results indicated that maintenance of biomass concentration above 2,500 mg MLVSS/L resulted in the complete phosphate removal from the influent (i.e. 15 mg PO4 3−-P/L) for a mean hydraulic residence time (HRT) of 15 h. Additionally, by increasing the influent COD/P ratio from 10 to 20 g/g, the system P removal efficiency was improved although the experimental results indicated a possible enhancement of the competition between phosphorus accumulating organisms (PAOs) and other microbial populations without phosphorus uptake ability. Moreover, because of the use of acetate (i.e. easily biodegradable substrate) as the sole carbon source in the system feed, application of anaerobic retention times greater than 2 h resulted in no significant release of additional P in the anaerobic zone and no further amelioration of the system P removal efficiency. The application of anoxic P removal resulted in more than 50% reduction of the organic carbon necessitated for nitrogen and phosphorus removal when compared to a conventional EBPR system incorporating aerobic phosphorus removal.  相似文献   

9.
This study investigated the feasibility and the treatment efficiency of a cyclic anoxic/aerobic two-stage MBR for treating polymeric industrial wastewater. The anoxic/aerobic hybrid MBR was operated without sludge withdrawal except sampling during the study. The results showed that the highest COD organic loading rate of 8.7 kg COD/m3 day from bioreactor was obtained at phase 3. The system achieved 97% BOD5 and 89% COD removal. It also revealed that 93% of COD removal was contributed by bioreactor at phase 3 and the similar results happened to phases 1 and 2. The highest TN and TKN removals for each phase were 60, 74, 80% and 61, 74, 81%, respectively and limited by nitritation step. SEM images of nascent and fouled membranes were offered to evaluate the cleaning method. The system was operated for 174 days, resulting in high degradation rate, flexibility towards influent fluctuations and limited sludge production.  相似文献   

10.
In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m3/day under aerobic nitrogen loading rate of 3.8 kg-N/m3/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH3/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m3/day under anaerobic nitrogen loading rate of 4.1 kg-N/m3/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation–anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor.  相似文献   

11.
Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25°C (peak summer temperature, 31.5°C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m3/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m3/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions.  相似文献   

12.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

13.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

14.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

15.
The formation of aerobic granules with low organic loading synthetic wastewater (150-200 mg L−1 of influent COD, acetate/propionate = 1/3) at low aeration rate (0.6 cm s−1 of superficial gas velocity) had been investigated in the anaerobic/oxic/anoxic SBR. Aerobic granules with smooth surface and compact structure were successfully obtained after 50 days. However, these aerobic granules were unstable when the d(0.9) of granules increased to more than 1 mm. The results suggested that the aerobic granules with small diameter (smaller than 1000 μm) were more favorable for treating the low substrate loading wastewater at the low aeration rate. The cycle test revealed that most of the influent COD was removed at the anaerobic stage. The effluent concentrations of N-NH4+ and P-PO43− were lower than 1 mg L−1, and the effluent concentration of nitrate gradually decreased with the granulation. Phosphate accumulating organisms were found to utilize O2 or NOx as electron acceptor for phosphorus removal in the study. Simultaneous nitrogen and phosphorus removal occurred inside the granules.  相似文献   

16.

Excess inorganic nitrogen in water poses a severe threat to enviroment. Removal of inorganic nitrogen by heterotrophic nitrifying–aerobic denitrifying microorganism is supposed to be a promising and applicable technology only if the removal rate can be maintained sufficiently high in real wastewater under various conditions, such as high concentration of salt and wide range of different nitrogen concentrations. Here, a new heterotrophic nitrifying–aerobic denitrifying bacterium was isolated and named as Pseudomonas mendocina TJPU04, which removes NH4+-N, NO3-N and NO2-N with average rate of 4.69, 5.60, 4.99 mg/L/h, respectively. It also maintains high nitrogen removal efficiency over a wide range of nitrogen concentrations. When concentration of NH4+-N, NO3-N and NO2-N was up to 150, 150 and 50 mg/L, 98%, 93%, and 100% removal efficiency could be obtained, respectively, after 30-h incubation under sterile condition. When it was applied under non-sterile condition, the ammonia removal efficiency was slightly lower than that under sterile condition. However, the nitrate and nitrite removal efficiencies under non-sterile condition were significantly higher than those under sterile condition. Strain TJPU04 also showed efficient nitrogen removal performance in the presence of high concentration of salt and nitrogen. In addition, the removal efficiencies of NH4+-N, NO3-N and TN in real wastewater were 91%, 52%, and 75%, respectively. These results suggest that strain TJPU04 is a promising candidate for efficient removal of inorganic nitrogen in wastewater treatment.

  相似文献   

17.
Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.  相似文献   

18.
The use of an immobilized-cell reactor for simultaneous carbon–nitrogen removal in wastewater with the monitoring of oxidation–reduction potential (ORP) in an intermittent aeration (IA) process was investigated. Under alternating aerated and nonaerated conditions, the ORP-time profile showed distinctive turning points that directly correlated with changes in the system chemistry and biological activity. The aeration ratio, defined as aeration time/cycle time, was optimum at 50% for obtaining the maximum efficiency of denitrification accompanied by sufficient nitrification. High simultaneous carbon–nitrogen removal efficiency could be achieved using the immobilized-cell reactor by applying the IA process. More than 90% of COD-removal efficiency and over 80% of total-nitrogen-removal efficiency were obtained using three aerobic–anoxic cycles per day at an aeration ratio of 50% and with a hydraulic retention time of 10 h. Journal of Industrial Microbiology & Biotechnology (2000) 25, 229–234. Received 26 January 2000/ Accepted in revised form 08 August 2000  相似文献   

19.
Estimation of nitrogen dynamics in a vertical-flow constructed wetland   总被引:2,自引:0,他引:2  
The vertical-flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a model using the STELLA software for estimating nitrogen (N) dynamics in an artificial VFCW (i.e., a substrate column with six zones) associated with a growing Cyperus alternifolius species under a wetting (wastewater) -to-drying ratio of 1:3. The model was calibrated by our experimental data with a reasonable agreement prior to its applications. Simulations showed that rates of NH4+-N and NO3-N leaching decreased with increasing zone number (or column depth), although such a decrease was much more profound for NH4+-N. Our simulations further revealed that rate of NH4+-N leaching decreased with time within each zone, whereas rate of NO3-N leaching increased with time within each zone. Additionally, both the rates of NH4+-N and NO3-N leaching through zones followed the water flow pattern: breakthrough during wetting period and cessation during drying period. In general, the cumulative amounts of total nitrogen (TN) were in the following order: leaching > denitrification > uptake > settlement. About 54% of the TN from the wastewater flowed out of the VFCW system, 18% of TN lost due to denitrification, 6% of TN was taken up by roots of a single plant (one hill), and the rest of 22% TN from the wastewater was removed from other mechanisms, such as volatilization, adsorption, and deposition. This study suggested that to improve the overall performance of a VFCW for N removal, prevention of N leaching loss was one of the major issues.  相似文献   

20.
A bench-scale anaerobic–anoxic–oxic (A2O) bioreactor with steady denitrifying phosphorus removal performance was tested to determine the influence of influent C/N ratio (SCOD/TN) and C/P ratio (SCOD/TP) on biological nutrient removal for treating synthetic brewage wastewater; meanwhile, the spatial profiles of DO, pH and ORP sensors in such systems were investigated. The results showed that influent C/N ratio had significant effect on the TN, TP removal efficiencies and the ratio of anoxic to aerobic P uptake amount. The maximal TN and TP removal efficiencies could be achieved when influent C/N ratio was kept at about 7.1 and 5, respectively. Besides, the ratio of anoxic to aerobic P uptake amount was found to be linearly dependent on the influent C/N ratio with coefficient R 2 of 0.685 when total recirculation ratio was constant at 3.5. Influent C/P ratio had an important effect on the TP removal efficiency, while it hardly affected TN removal efficiency. In addition, the TP removal efficiency reached the maximum for influent C/P ratio of 42. On the other hand, it was also found that the typical profiles of DO, pH and ORP sensors could be observed, and they have similar trends at the different influent C/N ratio and C/P ratio. It was suggested that the operational state could be well known according to the changes of simple on-line sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号