首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

2.
The Mas protooncogene encodes a G protein-coupled receptor with the common seven transmembrane domains and may be involved in the actions of angiotensins. The gene is located in close proximity to the paternally imprinted Igf2r gene and its maternal imprinting has been reported but remained controversial. We used mice carrying a targeted deletion of the Mas protooncogene on the maternal or paternal chromosome to clarify this issue. In all Mas-expressing organs of adult mice such as heart, kidney, testis or brain, no Mas mRNA was missing in heterozygous animals inheriting the deleted allele from the father excluding mono-allelic paternal expression. However, we show exclusive paternal expression of a Mas antisense RNA, confirming the maternal imprinting of this antisense RNA in all investigated adult tissues and in embryos. Our results strongly suggest that Mas is not imprinted in mice but that an antisense RNA probably starting in the neighboring Igf2r gene is maternally imprinted in both embryos and adult organs.  相似文献   

3.
Snrpn is known to be abundantly expressed in rodent brain and heart, and in two separate studies with neonatal mouse brain it has been shown to be maternally imprinted, that is, the maternal allele is normally repressed. We now provide evidence on the expression profile and imprinting status of Snrpn throughout development. Using RT-PCR, we have established that Snrpn is further expressed at low levels in lung, liver, spleen, kidney, skeletal muscle, and gonads. Moreover, using mice with only maternal copies of Snrpn (maternal duplication for the chromosome region involved and parthenogenotes), we have shown that the gene is imprinted in all of these tissues and, generally, from the time the gene is first expressed at 7.5 days gestation. In contrast to the findings made with the imprinted genes, Igf2, Ins1, and Ins2, there is no evidence of tissue-specific imprinting in the embryo with Snrpn. Nor, as found with Igf2 and Igf2r, is there evidence of a window of biallelic expression between the germ line imprint and the time of gene repression. The absence of Snrpn expression in early embryos contrasts with the findings in ES cells.  相似文献   

4.
5.
6.
7.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

8.
Igf2 (insulin‐like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene‐cluster that leads to parent‐specific expression, with current models including parental allele‐specific DNA methylation and chromatin modifications, DNA‐binding of insulator proteins (CTCFs) and three‐dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. ‘The enhancer competition model’, ‘the boundary model’ and ‘the chromatin‐loop model’ are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.  相似文献   

9.
Uniparental embryos have been instrumental in studying imprinting because contributions from the parental genomes can be determined unambiguously. In this study, we set out to identify imprinted genes showing differential expression between parthenogenetic and fertilized embryos during preimplantation and early postimplantation stages of development. We identified three genes-apolipoprotein E, pyruvate kinase-3, and protein phosphatase 1 gamma-that represent excellent candidates for imprinted genes, based on the results of the differential screen, their function in differentiation and the cell cycle, and their location within imprinted chromosomal regions. In addition, two novel genes expressed in trophoblast were identified, 1661 and RA81. These genes, together with four known imprinted genes, H19, Igf2r, Igf2, and Snrpn, showed evidence of expression from both parental alleles in early stage embryos, indicating a role for postfertilization processes in regulating imprinted gene function. © 1995 Wiley-Liss, Inc.  相似文献   

10.
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.  相似文献   

11.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

12.
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta.  相似文献   

13.
The cation independent mannose 6-phosphate/insulin-like growth factor 2 receptor (IGF2R) functions in the transportation and regulation of insulin-like growth factor 2 (IGF2) and mannose 6-phosphate modified proteins. The relative and specific titration of IGF2 by high affinity binding of IGF2R represents a mechanism that supports the parental conflict theory of genomic imprinting. Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele expressed) arose to regulate the relative supply of both proteins. Experiments in the mouse have established that loss of the maternal allele of Igf2r results in disproportionate growth and peri-natal lethality. In order to systematically investigate the consequences of loss of function and of hypomorphic alleles of Igf2r on growth functions, we introduced a conditional human IGF2R exon 3–48 cDNA into the intron 2 region of murine Igf2r. Here we show that the knock-in construct resulted in over-growth when the humanised Igf2r allele was maternally transmitted, a phenotype that was rescued by either paternal transmission of the humanised allele, expression of a wild-type paternal allele or loss of function of Igf2. We also show that expression of IGF2R protein was reduced to less than 50% overall in tissues previously known to be Igf2 growth dependent. This occurred despite the detection of mouse derived peptides, suggesting that trans-splicing of the knock-in human cDNA with the endogenous maternal mouse Igf2r allele. The phenotype following maternal transmission of the humanised allele resulted in overgrowth of the embryo, heart and placenta with partial peri-natal lethality, suggesting that further generation of hypomorphic Igf2r alleles are likely to be at the borderline of maintaining Igf2 dependent viability.  相似文献   

14.
CTCF is a zinc finger DNA-binding protein that regulates the epigenetic states of numerous target genes. Using allelic regulation of mouse insulin-like growth factor II (Igf2) as a model, we demonstrate that CTCF binds to the unmethylated maternal allele of the imprinting control region (ICR) in the Igf2/H19 imprinting domain and forms a long-range intrachromosomal loop to interact with the three clustered Igf2 promoters. Polycomb repressive complex 2 is recruited through the interaction of CTCF with Suz12, leading to allele-specific methylation at lysine 27 of histone H3 (H3-K27) and to suppression of the maternal Igf2 promoters. Targeted mutation or deletion of the maternal ICR abolishes this chromatin loop, decreases allelic H3-K27 methylation, and causes loss of Igf2 imprinting. RNA interference knockdown of Suz12 also leads to reactivation of the maternal Igf2 allele and biallelic Igf2 expression. CTCF and Suz12 are coprecipitated from nuclear extracts with antibodies specific for either protein, and they interact with each other in a two-hybrid system. These findings offer insight into general epigenetic mechanisms by which CTCF governs gene expression by orchestrating chromatin loop structures and by serving as a DNA-binding protein scaffold to recruit and bind polycomb repressive complexes.  相似文献   

15.
16.
Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key “imprinting hot spots” in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.  相似文献   

17.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

18.
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号