首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmUMtb) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmUMtb in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmUMtb. In this SN2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmUMtb; we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmUMtb, which may be exploited for the development of inhibitors specific to GlmU.  相似文献   

2.
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of “nutritional immunity”, where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.  相似文献   

3.
Kruh NA  Troudt J  Izzo A  Prenni J  Dobos KM 《PloS one》2010,5(11):e13938

Background

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a facultative intracellular pathogen that can persist within the host. The bacteria are thought to be in a state of reduced replication and metabolism as part of the chronic lung infection. Many in vitro studies have dissected the hypothesized environment within the infected lung, defining the bacterial response to pH, starvation and hypoxia. While these experiments have afforded great insight, the picture remains incomplete. The only way to study the combined effects of these environmental factors and the mycobacterial response is to study the bacterial response in vivo.

Methodology/Principal Findings

We used the guinea pig model of tuberculosis to examine the bacterial proteome during the early and chronic stages of disease. Lungs were harvested thirty and ninety days after aerosol challenge with Mtb, and analyzed by liquid chromatography-mass spectrometry. To date, in vivo proteomics of the tubercle bacillus has not been described and this work has generated the first large-scale shotgun proteomic data set, comprising over 500 unique protein identifications. Cell wall and cell wall processes, and intermediary metabolism and respiration were the two major functional classes of proteins represented in the infected lung. These classes of proteins displayed the greatest heterogeneity indicating important biological processes for establishment of a productive bacterial infection and its persistence. Proteins necessary for adaptation throughout infection, such as nitrate/nitrite reduction were found at both time points. The PE-PPE protein class, while not well characterized, represented the third most abundant category and showed the most consistent expression during the infection.

Conclusions/Significance

Cumulatively, the results of this work may provide the basis for rational drug design – identifying numerous Mtb proteins, from essential kinases to products involved in metal regulation and cell wall remodeling, all present throughout the course of infection.  相似文献   

4.
Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate). AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis.  相似文献   

5.
The essential mycobacterial protein kinases PknA and PknB play crucial roles in modulating cell shape and division. However, the precise in vivo functional aspects of PknA have not been investigated. This study aims to dissect the role of PknA in mediating cell survival in vitro as well as in vivo. We observed aberrant cell shape and severe growth defects when PknA was depleted. Using the mouse infection model, we observe that PknA is essential for survival of the pathogen in the host. Complementation studies affirm the importance of the kinase, juxtamembrane, and transmembrane domains of PknA. Surprisingly, the extracytoplasmic domain is dispensable for cell growth and survival in vitro. We find that phosphorylation of the activation loop at Thr172 of PknA is critical for bacterial growth. PknB has been previously suggested to be the receptor kinase, which activates multiple kinases, including PknA, by trans-phosphorylating their activation loop residues. Using phospho-specific PknA antibodies and conditional pknB mutant, we find that PknA autophosphorylates its activation loop independent of PknB. Fluorescently tagged PknA and PknB show distinctive distribution patterns within the cell, suggesting that although both kinases are known to modulate cell shape and division, their modes of action are likely to be different. This is supported by our findings that expression of kinase-dead PknA versus kinase-dead PknB in mycobacterial cells leads to different cellular phenotypes. Data indicate that although PknA and PknB are expressed as part of the same operon, they appear to be regulating cellular processes through divergent signaling pathways.  相似文献   

6.
Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet–visible (UV–vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.  相似文献   

7.
Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-γ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as α-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.  相似文献   

8.
Branched-chain amino acids (BCAAs) leucine, isoleucine and valine biosynthetic pathways have been reported from plants, fungi and bacteria including Mycobacterium tuberculosis (Mtb) but are absent in animals. This makes interventions with BCAAs biosynthesis an attractive proposition for antimycobacterial drug discovery. In the present study, Mycobacterium tuberculosis H37Ra (Mtb-Ra) ketol-acid reductoisomerase encoding ORF MRA_3031 was studied to establish its role in Mtb-Ra growth and survival. Recombinant knockdown (KD) and complemented (KDC) strains along with wild-type (WT) Mtb-Ra were studied under in-vitro and ex-vivo conditions. KD was defective for survival inside macrophages and showed time dependent decrease in its colony forming unit (CFU) counts, while, WT and KDC showed time dependent increase in CFUs, after macrophage infection. Also, KD showed reduced ability to form persister cells, had altered membrane permeability against ethidium bromide and nile red dyes, and had reduced biofilm maturation, compared to WT and KDC. The in-vivo studies showed that KD infected mice had lower CFU counts in lungs, compared to WT. In summary Mtb shows survival deficit in macrophages and in mice after ketol-acid reductoisomerase down-regulation.  相似文献   

9.
10.
Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase’s enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.  相似文献   

11.
Tuberculosis is a global infectious disease caused by Mycobacterium tuberculosis (Mtb). Although novel Mtb biomarkers from both the pathogen and host have been studied, more breakthroughs are still needed to meet different clinic requirements. In an effort to identify Mtb antigens, chaperone-peptide complexes were purified from TB infected lungs using free-solution isoelectric focusing combined with high resolution LTQ Orbitrap Velos mass spectrometry. Antigen specific cellular immune responses in vitro were then examined. Those efforts led to the identification of six Mtb peptides only identified in Tuberculosis lung samples and that were not found in the control samples. Additionally, antigen-specific IFN-γ secretion, T-cell proliferation, cytokine expression, and a cytotoxic assay were also evaluated. Among the peptides isolated, we identified a 34 amino acid peptide named PKAp belonging to a serine/threonine–protein kinase, as being able to generate Mtb-specific cellular immune responses as noted by elevated antigen-specific cytokine secretion levels, increased CD8+ T-cell proliferation and a strong cytotoxic lymphocyte (CTL) response. Moreover, the immune stimulating abilities of PKAp were further validated in vivo, with target peptide immunized mice showing an increased cellular IFN-γ in both the lungs and spleen without causing immunopathogenesis. In conclusion, we identified novel functional Mtb antigens directly from the granulomatous lesions of Tuberculosis patients, inducing not only significant antigen-specific IFN-γ secretion but also a marked cytotoxic lymphocyte functional response. These findings indicated that PKAp has potential as a novel antigen biomarker for vaccine development.Mycobacterium tuberculosis (Mtb),1 the infectious agent that causes tuberculosis, is associated with an estimated 1.4 million deaths per year and remains a major global health concern (1). Current research and diagnostics have focused on antigen screening and biomarker discovery, with most antigen screening methods focused on the bacterial pathogen itself, with less focus on the Mtb infected host (2). The pathogenic progression of TB occurs in the lungs, making the characterization of any functional antigens existing in the lungs during infection potentially useful for immunotherapy or vaccine development. The immune response to an Mtb infection results in the formation of a granuloma that initially contains bacterial expansion, but may fail to eliminate the pathogen (3, 4). This immune response brings with the possibility of identifying Mtb functional antigens in the lung tissue and to gain a clearer understanding of the immune mechanisms (5, 6). Although it has been well studied that a T-cell mediated adaptive immune response plays a central role during Mtb infection and is crucial in both protection and pathogenesis, a better understanding of the antigen induced immune response and correlations to pathogenicity is necessary (2, 7).It has been reported that heat shock proteins (such as the HSP70 family members) and others chaperones such as Gp96 can specifically bind many hydrophobic sequences, enabling them to bind foreign peptides associated with intracellular bacterial or viral challenge (8), such as Gp96 associating with a HBV-specific peptide (9). Previous studies have shown that chaperone-peptide complexes can induce a disease-specific immune response (1012), with the gp96-peptide complex from H37Rv infected cells able to induce a protective antigen specific immune response (13). Currently, no Mtb chaperone-associated peptides have been isolated directly from patients, thus the present study explores the possible existence of these complexes in TB lung tissue.To achieve this objective, the free-solution isoelectric focusing (FS-IEF) technique, which has been reported to enrich chaperones in cell lysates or tissue samples, was combined with Linear Trap Quadrupole (LTQ) OrbitrapVelos mass spectrometry, which was used to identify the associated Mtb peptides. Using these techniques, we obtained chaperone-rich cell lysates from the granulomatous lung lesions of active TB patients and identified six Mtb-associated peptides not noted in the control samples. Among them, a peptide (PKAp) derived from Mtb Protein Kinase A not only contributed to significant antigen-specific IFN-γ secretion, but also contributed to CTL function and T-cell proliferation. Importantly, murine immunization with PKAp derived peptides elicited an antigen-specific cellular activation without the occurrence of immune pathogenesis.  相似文献   

12.
The NLR gene family mediates host immunity to various acute pathogenic stimuli, but its role in chronic infection is not known. This paper addressed the role of NLRP3 (NALP3), its adaptor protein PYCARD (ASC), and caspase-1 during infection with Mycobacterium tuberculosis (Mtb). Mtb infection of macrophages in culture induced IL-1β secretion, and this requires the inflammasome components PYCARD, caspase-1, and NLRP3. However, in vivo Mtb aerosol infection of Nlrp3−/−, Casp-1−/−, and WT mice showed no differences in pulmonary IL-1β production, bacterial burden, or long-term survival. In contrast, a significant role was observed for Pycard in host protection during chronic Mtb infection, as shown by an abrupt decrease in survival of Pycard−/− mice. Decreased survival of Pycard−/− animals was associated with defective granuloma formation. These data demonstrate that PYCARD exerts a novel inflammasome-independent role during chronic Mtb infection by containing the bacteria in granulomas.  相似文献   

13.
Metabolic pathways used by Mycobacterium tuberculosis (Mtb) to establish and maintain infections are important for our understanding of pathogenesis and the development of new chemotherapies. To investigate the role of fructose-1,6-bisphosphate aldolase (FBA), we engineered an Mtb strain in which FBA levels were regulated by anhydrotetracycline. Depletion of FBA resulted in clearance of Mtb in both the acute and chronic phases of infection in vivo, and loss of viability in vitro when cultured on single carbon sources. Consistent with prior reports of Mtb''s ability to co-catabolize multiple carbon sources, this in vitro essentiality could be overcome when cultured on mixtures of glycolytic and gluconeogenic carbon sources, enabling generation of an fba knockout (Δfba). In vitro studies of Δfba however revealed that lack of FBA could only be compensated for by a specific balance of glucose and butyrate in which growth and metabolism of butyrate were determined by Mtb''s ability to co-catabolize glucose. These data thus not only evaluate FBA as a potential drug target in both replicating and persistent Mtb, but also expand our understanding of the multiplicity of in vitro conditions that define the essentiality of Mtb''s FBA in vivo.  相似文献   

14.
In vitro incubation of 6-day Nippo-strongylus brasiliensis in the presence of PGE1 at 1000 ng/ml and PGE2 at 500–10,000 ng/ml of medium did not affect worm motility nor in vivo survival of worms implanted into the small intestine of recipient rats. The intraduodenal injection of 250 and 500 μg PGE1 or PGE2 did not lead to expulsion of worms from infected rats. An in vitro exposure to precursor fatty acids of PGE1 and PGE2, dihomo-γ-linolenic acid and arachidonic acid, respectively, at concentrations of 1000–15,000 ng/ml of medium also failed to inhibit worm motility and in vivo worm survival. These results are at variance with some earlier reports and do not suggest that prostaglandins are directly involved in the immune rejection of N. brasiliensis. No prostaglandins could be demonstrated in worm homogenates.  相似文献   

15.
In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtbH344Y) or hydrolase dead (RelMtbH80A). M. tuberculosis strains expressing the synthetase-dead RelMtbH344Y mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtbH80A, that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtbH80A expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.  相似文献   

16.
Autophagy provides an important defense mechanism against intracellular bacteria, such as Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis disease (TB). We recently reported that pathogen recognition and antibacterial autophagy are connected by the induction of the DNA damage-regulated autophagy modulator DRAM1 via the toll-like receptor (TLR)-MYD88-NFKB innate immunity signaling pathway. Having shown that DRAM1 colocalizes with Mtb in human macrophages, we took advantage of a zebrafish model for TB to investigate the function of DRAM1 in autophagic host defense in vivo. We found that DRAM1 protects the zebrafish host from infection with Mycobacterium marinum (Mm), a close relative of Mtb. Overexpression of DRAM1 increases autophagosome formation and promotes autophagic flux by a mechanism dependent on the cytosolic DNA sensor TMEM173/STING and the ubiquitin receptor SQSTM1/p62. Here we summarize and discuss the implications of these findings.  相似文献   

17.
Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH, suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.  相似文献   

18.
BackgroundRegulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb.MethodsWe evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv).ResultsThe frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups.ConclusionsTregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence.  相似文献   

19.
Several enzymes involved in central carbon metabolism and gluconeogenesisplay a critical role in survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The only known functional fructose 1,6-bisphosphatase (FBPase) in Mtb is encoded by the glpX gene and belongs to the Class II sub-family of FBPase. We describe herein the generation of a ΔglpX strain using homologous recombination. Although the growth profile of ΔglpX is comparable to that of wild type Mtb when grown on the standard enrichment media, its growth is dysgonic with individual gluconeogenic substrates such as oleic acid, glycerol and acetate. In mice lung CFU titers of ΔglpX were 2–3 log10 lower than the wild-type Mtb strain. The results indicate that glpX gene encodes a functional FBPase and is essential for both in vitro and in vivo growth and survival of Mtb. Loss of glpX results in significant reduction of FBPase activity but not complete abolition. These findings verify that the glpX encoded FBPase II in Mtb can be a potential target for drug discovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号